Area of a Surface of Revolution-

soe236
Messages
22
Reaction score
0
[SOLVED] Area of a Surface of Revolution--Help Please

1. Problem: The curve y=e^(-x), x>0 is revolvd about the xaxis. Does the resultin surface have finite or infinite area? [Remember tht you can sometimes decide whether improper integral converges w/out calculating it exactly]



2. Surface area over [a,b]= 2(pi)*integral[f(x)*squareroot(1+f'(x)^2)dx]
Comparison test for improper integrals assuming f(x)>g(x)>0 for x>a: if integral[f(x)dx] on [a,infinity] converges, then integral[g(x)dx] on [a,infinity] also converges.




3. Surface area= 2(pi)*integral[e^(-x)*squareroot(1+e^(-2x))dx].. are the bounds [0,infinity]? What do I do after that to find out if it's finite or not? I'll appreciate any help. Thanks in advance
 
Physics news on Phys.org
You put down a comparison test, find something bigger than your integrand that is easy to integrate.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top