Assumption of thermal equilibrium for ensembles

Coffee_
Messages
259
Reaction score
2
Take for example a canonical ensemble, to use the derived distributions and probabilities, the considered system has to be in thermal equilibrium with the heat bath.

Where in the derivation of the probabilities and distributions do we usually assume this? There is a point that I can identify assuming a constant temperature for the heat bath yes, but I can't find where we assume that the temperature of the system is equal to the temperature of the heat bath.
 
Physics news on Phys.org
You are deducing the results for a system in thermal interaction with an heat bath by considering the heat bath + the system as an isolated system and using the max-entropy principle for the combined system. See H B Callen's book on thermodynamics.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top