Average Acceleration - Calculate Magnitude & Direction

AI Thread Summary
To calculate the average acceleration of a bird flying north at 5 m/s and then veering east at the same speed over a 2-second interval, vector subtraction is used. The initial velocity (V1) is north, and the final velocity (V2) is east, making them perpendicular. The change in velocity is found using the Pythagorean theorem, resulting in a magnitude of approximately 7.07 m/s. Dividing this by the time interval of 2 seconds gives an average acceleration of about 3.54 m/s². The final answer confirms the calculation of average acceleration.
TyErd
Messages
297
Reaction score
0
A bird is flying north at 5 m/s. The bird veers and travels at 5 m/s east. This happens over a 2 second period. what is the average acceleration (magnitude and direction) during this 2 second interval?
 
Physics news on Phys.org
It is vector subtraction problem. Find (V2 - V1) and divide it by t.
 
correct me if I am wrong but is the answer 5? I am not sure
 
V1 is towards north, v2 is towards east. - v1 is towards south. V1 and V2 are at right angle to each other. There fore magnitude of the change in velocity is sqrt(V1^2 + V2^2)
 
So the average acceleration is 3.53m/s/s Yes?
 
Yes.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Back
Top