Average energy of a damped driven oscillator

Bestphysics112
Messages
24
Reaction score
2

Homework Statement


http://imgur.com/a/lv6Uo

Homework Equations


Look below

The Attempt at a Solution


I was unsure where to start. I thought that parseval's theorem may be helpful. I know the Potential energy is equivalent to .5kx^2 and T will be the integral of the force. So i have $$<E> = \frac{1}{t} \int_{-t/2}^{t/2}\frac{1}{2}kx^2dt + \frac{1}{t}\int_{-t/2}^{t/2}\sum_{n=1}^{\infty} f_0_n cos(nwt+\phi_n)dt$$

Is this on the right track? If it is, how can i simplify this?

Edit: I can't figure out how to use latex so here is my work so far: http://imgur.com/a/eTigf
 
Last edited:
Physics news on Phys.org
After re reading my textbook I was able to get the correct answer
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top