Average Kinetic Energy of Electron in the Conduction Band

Teymur
Messages
16
Reaction score
3
Homework Statement
Show that:
$$<\:K.E.>\:=E_c+3/2\:k_B\:T$$
Relevant Equations
$$<\:K.E.>\:=\frac{\left(total\:K.E.\right)}{\left(no.of\:electrons\right)}$$

$$<\:K.E.>\:=\:\frac{\int \:\left(E-E_c\right)g\left(E\right)f\left(E\right)dE}{\int \:g\left(E\right)f\left(E\right)dE}$$
Hello,
I've seen in a few books on solid state physics that one can deduce an expression for average K.E.:

$$<\:K.E.>\:=E_c+3/2\:k_B\:T$$

from the following:

$$<\:K.E.>\:=\:\frac{\int \:\left(E-E_c\right)g\left(E\right)f\left(E\right)dE}{\int \:g\left(E\right)f\left(E\right)dE}$$

I can't, however, find any work through of how to do so. I've had a go at the bottom part:

where ##n=\int g\left(E\right)f\left(E\right)dE## and ##\int \:x^{\frac{1}{2}}exp\left(-x\right)dx=\frac{\pi \:^{\frac{1}{2}}}{2}##

and

##g\left(E\right)=\frac{\left(2m_e\right)^{\frac{3}{2}}\left(E-E_c\right)^{\frac{1}{2}}}{2\pi ^2ℏ^3}## and ##f\left(E\right)\approx exp\left(\frac{\mu -E}{k_B\:T}\right)##

to get:

$$n=2\left(\frac{m_ek_B\:T}{2\pi ℏ^2}\right)^{\frac{3}{2}}\:exp\left(\frac{\mu -E_c}{k_B\:T}\right)$$

But how does one integrate the numerator with the ##\left(E\:-E_c\right)## term and simplify to the desired result?
 
Physics news on Phys.org
p.s. I used: ##x=\left(\frac{E-E_c}{k_B\:T}\right)## for the integral: ##\int \:g\left(E\right)f\left(E\right)dE \rightarrow \int \:x^{\frac{1}{2}}exp\left(-x\right)dx##
 
Teymur said:
But how does one integrate the numerator with the ##\left(E\:-E_c\right)## term and simplify to the desired result?
The numerator integration is very similar to the integration in the denominator. The factor ##\left(E\:-E_c\right)## has a simple relation to ##x##.
 
  • Like
Likes PeroK and hutchphd
Aha .. I'm not sure why I didn't spot that.
 
Another very important trick used in statistical physics is to calculate the denominator, the socalled "partition sum" and then take a derivative wrt. ##\beta=1/(k_{\text{B}} T)##, which is an application of the celebrated Feynman-Hellmann theorem.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top