- #1
srmico
- 16
- 1
Hello,
1. Homework Statement
A spherical continuous ball is sliding with a constant velocity v along a frictionless lane. Thereafter it enters an inclined surface (the angle between the surface and the horizontal plane is α) with the coefficient of friction µ between the ball and the surface.
Find the maximal height it may reach if it is known that before full stop the ball was rolling.
I solved it using energies but i get an extra dependence on velocity when the ball starts rolling, and my professor told me to repeat the exercice using torque, where the solution is nicer.
I divided the motion in two parts:
1-First the ball is sliding, when it starts going up the ramp the frictional force causes it to start rotating and lose velocity until v(t1)=wR (rolling condition).
2-From rolling until it stops at v(t2)=0
1: I use v(t1)=v(0)+at => (wR)=v(0)+at, but a depends on t as well, so I don't know how to continue.
1. Homework Statement
A spherical continuous ball is sliding with a constant velocity v along a frictionless lane. Thereafter it enters an inclined surface (the angle between the surface and the horizontal plane is α) with the coefficient of friction µ between the ball and the surface.
Homework Equations
Find the maximal height it may reach if it is known that before full stop the ball was rolling.
The Attempt at a Solution
I solved it using energies but i get an extra dependence on velocity when the ball starts rolling, and my professor told me to repeat the exercice using torque, where the solution is nicer.
I divided the motion in two parts:
1-First the ball is sliding, when it starts going up the ramp the frictional force causes it to start rotating and lose velocity until v(t1)=wR (rolling condition).
2-From rolling until it stops at v(t2)=0
1: I use v(t1)=v(0)+at => (wR)=v(0)+at, but a depends on t as well, so I don't know how to continue.
Last edited: