srmico
- 16
- 1
I ended up solving it this way, if anyone is interested:
From the conservation of energy we have that
\begin{equation}
\frac{1}{2}mv^{2}=mgh+\Delta E
\label{eq:1}
\end{equation}
where $\Delta E$ is the energy difference due to friction force.
\begin{equation*}
\Delta E=E_{f}\text{(energy lost due to friction)}-E_{r}\text{(rotational energy)}
\end{equation*}
To calculate $E_{f}$ we have
\begin{equation}
F_{f}=ma=-\mu mg\cos(\theta)
\label{eq:2}
\end{equation}
\begin{equation}
E_{f}=-\mu mg\cos(\theta)d
\label{eq:3}
\end{equation}
Now from \ref{eq:2} we find
\begin{equation*}
a=-\mu g\cos(\theta)
\end{equation*}
And integrating with respect to time we find the velocity
\begin{equation*}
v=-\mu g\cos(\theta)t+v_{0}
\end{equation*}
To be able to find d, we need the time where the rolling condition is fulfilled i.e.
\begin{equation}
w(t_0)=\frac{v(t_0)}{r}
\label{eq:4}
\end{equation}
We are missing an expression for $\omega$, but we can get one from
\begin{equation*}
\tau = I\alpha = F_{f}r= \mu mg\cos(\theta)r
\end{equation*}
Solving fro $\alpha$ and using $I=\frac{2}{5}mr^{2}$
\begin{equation*}
\alpha = \frac{5}{2}\frac{\mu g \cos(\theta)}{r}
\end{equation*}
Integrating with respect to time we find
\begin{equation*}
\omega = \frac{5}{2}\frac{\mu g \cos(\theta)}{r}t
\end{equation*}
Now that we have an equation for $\omega$ and an equation for $v$ we can substitute in \ref{eq:4} to find time $t_{0}$ at which the rolling condition is met. Solving for $t_{0}$ we find
\begin{equation*}
t_{0} = \frac{2V_{0}}{7\mu g \cos(\theta)}
\end{equation*}
Since we have an expression for $v(t)$, we can integrate from $t=0$ to $t=t_{0}$ to get the distance traveled in that interval
\begin{equation*}
d=\int_{0}^{\frac{2V_{0}}{7\mu g \cos(\theta)}}(-\mu g\cos(\theta)t+v_{0}) dt= \frac{12V_{0}^{2}}{49\mu g\cos(\theta)}
\end{equation*}
Substituting $d$ at \ref{eq:3} we finally get
\begin{equation*}
E_{f}=\frac{-12}{49}mV_{0}^{2}
\end{equation*}
Now we need an expression for $E_{r}$ to see how much energy was stored as rotational energy. For that we have
\begin{equation*}
E_{r}=\frac{I\omega(t_{0})^{2}}{2}=\frac{5}{49}mV_{0}^{2}
\end{equation*}
Finally, substituting $E_{f}$ and $E_{r}$ in \ref{eq:1}
\begin{equation*}
\frac{1}{2}mv^{2}=mgh+(E_{f}-E_{r})=mgh+\frac{7}{49}mV_{0}^{2}
\end{equation*}
And solving for $h$
\begin{equation*}
h=\frac{5V_{0}^{2}}{14g}
\end{equation*}
From the conservation of energy we have that
\begin{equation}
\frac{1}{2}mv^{2}=mgh+\Delta E
\label{eq:1}
\end{equation}
where $\Delta E$ is the energy difference due to friction force.
\begin{equation*}
\Delta E=E_{f}\text{(energy lost due to friction)}-E_{r}\text{(rotational energy)}
\end{equation*}
To calculate $E_{f}$ we have
\begin{equation}
F_{f}=ma=-\mu mg\cos(\theta)
\label{eq:2}
\end{equation}
\begin{equation}
E_{f}=-\mu mg\cos(\theta)d
\label{eq:3}
\end{equation}
Now from \ref{eq:2} we find
\begin{equation*}
a=-\mu g\cos(\theta)
\end{equation*}
And integrating with respect to time we find the velocity
\begin{equation*}
v=-\mu g\cos(\theta)t+v_{0}
\end{equation*}
To be able to find d, we need the time where the rolling condition is fulfilled i.e.
\begin{equation}
w(t_0)=\frac{v(t_0)}{r}
\label{eq:4}
\end{equation}
We are missing an expression for $\omega$, but we can get one from
\begin{equation*}
\tau = I\alpha = F_{f}r= \mu mg\cos(\theta)r
\end{equation*}
Solving fro $\alpha$ and using $I=\frac{2}{5}mr^{2}$
\begin{equation*}
\alpha = \frac{5}{2}\frac{\mu g \cos(\theta)}{r}
\end{equation*}
Integrating with respect to time we find
\begin{equation*}
\omega = \frac{5}{2}\frac{\mu g \cos(\theta)}{r}t
\end{equation*}
Now that we have an equation for $\omega$ and an equation for $v$ we can substitute in \ref{eq:4} to find time $t_{0}$ at which the rolling condition is met. Solving for $t_{0}$ we find
\begin{equation*}
t_{0} = \frac{2V_{0}}{7\mu g \cos(\theta)}
\end{equation*}
Since we have an expression for $v(t)$, we can integrate from $t=0$ to $t=t_{0}$ to get the distance traveled in that interval
\begin{equation*}
d=\int_{0}^{\frac{2V_{0}}{7\mu g \cos(\theta)}}(-\mu g\cos(\theta)t+v_{0}) dt= \frac{12V_{0}^{2}}{49\mu g\cos(\theta)}
\end{equation*}
Substituting $d$ at \ref{eq:3} we finally get
\begin{equation*}
E_{f}=\frac{-12}{49}mV_{0}^{2}
\end{equation*}
Now we need an expression for $E_{r}$ to see how much energy was stored as rotational energy. For that we have
\begin{equation*}
E_{r}=\frac{I\omega(t_{0})^{2}}{2}=\frac{5}{49}mV_{0}^{2}
\end{equation*}
Finally, substituting $E_{f}$ and $E_{r}$ in \ref{eq:1}
\begin{equation*}
\frac{1}{2}mv^{2}=mgh+(E_{f}-E_{r})=mgh+\frac{7}{49}mV_{0}^{2}
\end{equation*}
And solving for $h$
\begin{equation*}
h=\frac{5V_{0}^{2}}{14g}
\end{equation*}