How Do You Simplify Derivatives in Basic Differentiation Problems?

  • Thread starter Thread starter FaraDazed
  • Start date Start date
  • Tags Tags
    Differentiation
FaraDazed
Messages
347
Reaction score
2

Homework Statement


Differentiate the following and display in the simplest form.

Part A:
y=0.2x^5 - sin4x + cos4x

Part B:
y=(2x^4 +3)^3<br />

Part C:
<br /> y=2x^3 sinx<br />

Part D:
<br /> y=\frac{sinx}{x^2}<br />

Part E:
<br /> y=\frac{x^3}{x^2 +1}<br />

Homework Equations


chain rule
product rule
quotient rule

The Attempt at a Solution


Part A:
<br /> y=0.2x^5 - sin4x + cos4x \\<br /> y&#039;=x^4-4 \ cos4x-4 \ sin4x<br />

Part B:
<br /> y=(2x^4 +3)^3 \\<br /> let \ u =2x^4 +3 \\<br /> u&#039;=8x^3 \\<br /> y&#039;(u)=3u^2 \\<br /> y&#039;=3u^2 \times 8x^3 \\<br /> y&#039;=3(2x^4 +3)^2 \times 8x^3 \\<br /> y&#039;=24x^3(2x^4+3)^2 \\<br />

Part C:
<br /> y=2x^3 \ sinx \\<br /> let \ u = 2x^3 \\<br /> let \ v = sinx \\<br /> y&#039;=vu&#039;+uv&#039; \\<br /> y&#039;=sinx \ 6x^2 + 2x^3 \ cosx \\<br /> y&#039;=2x^2(3 \ sinx + x \ cosx)<br />

Part D:
<br /> y=\frac{sinx}{x^2} \\<br /> y&#039;=\frac{vu&#039;-uv&#039;}{v^2} \\<br /> y&#039;=\frac{x^2 cosx - sinx \ 2x}{(x^2)^2} \\<br /> y&#039;=\frac{x(x \ cosx - 2sinx)}{x^4} \\<br /> y&#039;=x^{-3}(x \ cosx - 2sinx)<br />

Part E:
<br /> y=\frac{x^3}{x^2 +1} \\<br /> y&#039;=\frac{vu&#039;-uv&#039;}{v^2} \\<br /> y&#039;=\frac{(x^2 +1)3x^2-x^32x}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{3x^4 + 3x^2 - 2x^4}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{x^2(3x^2 + 3 - 2x^2 )}{(x^2 +1)^2} \\<br />
 
Last edited:
Physics news on Phys.org
FaraDazed said:

Homework Statement


Differentiate the following and display in the simplest form.

Part A:
y=0.2x^5 - sin4x + cos4x

Part B:
y=(2x^4 +3)^3<br />

Part C:
<br /> y=2x^3 sinx<br />

Part D:
<br /> y=\frac{sinx}{x^2}<br />

Part E:
<br /> y=\frac{x^3}{x^2 +1}<br />



Homework Equations


chain rule
product rule
quotient rule


The Attempt at a Solution


Part A:
<br /> y=0.2x^5 - sin4x + cos4x \\<br /> y&#039;=x^4-4cos4x-4sin4x<br />

Part B:
<br /> y=(2x^4 +3)^3 \\<br /> let \ u =2x^4 +3 \\<br /> u&#039;=8x^3 \\<br /> y&#039;(u)=3u^2 \\<br /> y&#039;=3u^2 \times 8x^3 \\<br /> y&#039;=3(2x^4 +3)^2 \times 8x^3 \\<br /> y&#039;=24x^3(2x^4+3)^2 \\<br />

Part C:
<br /> y=2x^3 \ sinx \\<br /> let \ u = 2x^3 \\<br /> let \ v = sinx \\<br /> y&#039;=vu&#039;+uv&#039; \\<br /> y&#039;=sinx \ 6x^2 + 2x^3 \ cosx \\<br /> y&#039;=2x^2(3 \ sinx + x \ cosx)<br />

Part D:
<br /> y=\frac{sinx}{x^2} \\<br /> y&#039;=\frac{vu&#039;-uv&#039;}{v^2} \\<br /> y&#039;=\frac{x^2 cosx - sinx \ 2x}{(x^2)^2} \\<br /> y&#039;=\frac{x(x \ cosx - 2sinx)}{x^4} <br />

Part E:
<br /> y=\frac{x^3}{x^2 +1} \\<br /> y&#039;=\frac{vu&#039;-uv&#039;}{v^2} \\<br /> y&#039;=\frac{(x^2 +1)3x^2-x^32x}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{3x^4 + 3x^2 - 2x^4}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{x^2(3x^2 + 3 - 2x^2 )}{(x^2 +1)^2} \\<br />

A, B and C are ok . D is ok too just cancel that x you factored out with one x from the denominator to get it in simplest form. E is wrong try to rework it.
 
mtayab1994 said:
A, B and C are ok . D is ok too just cancel that x you factored out with one x from the denominator to get it in simplest form. E is wrong try to rework it.

Thanks for taking a look :), I have edited part D, is that what you meant?

On Part E, is it my jump from line 3 to line 4 where I went wrong or was it before that?

Thanks.
 
In the next to last step in part E, simplify the numerator first by combining like terms.

Also, it is best to post only a single problem, or two at most, in a thread.
 
mtayab1994 said:
A, B and C are ok . D is ok too just cancel that x you factored out with one x from the denominator to get it in simplest form. E is wrong try to rework it.

Here is my rework of Part E, I went around it a different way by expanding the denomator and then cancelling terms:
Part E:
<br /> y=\frac{x^3}{x^2 +1} \\<br /> y&#039;=\frac{vu&#039;-uv&#039;}{v^2} \\<br /> y&#039;=\frac{(x^2 +1)3x^2-x^32x}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{3x^4 + 3x^2 - 2x^4}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{x^4 + 3x^2}{x^4 + 2x^2 +1} \\<br /> y&#039;=\frac{3x^2}{2x^2+1}<br />

Does this work?

Thanks.
 
Last edited:
Mark44 said:
Also, it is best to post only a single problem, or two at most, in a thread.

OK no problem, will do, I just didn't want to create 3+ threads all in one go.
 
FaraDazed said:
Here is my rework of Part E, I went around it a different way by expanding the denomator and then cancelling terms:
Part E:
<br /> y=\frac{x^3}{x^2 +1} \\<br /> y&#039;=\frac{vu&#039;-uv&#039;}{v^2} \\<br /> y&#039;=\frac{(x^2 +1)3x^2-x^32x}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{3x^4 + 3x^2 - 2x^4}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{x^4 + 3x^2}{x^4 + 2x^2 +1} \\<br /> y&#039;=\frac{3x^2}{2x^2+1}<br />

Does this work?

Thanks.

No that does not work you can't just cancel out an x^4 because you haven't factored with it.

You third to last line is correct you will get x^4+3x^2 and just factor that out and you are done.
 
mtayab1994 said:
No that does not work you can't just cancel out an x^4 because you haven't factored with it.

You third to last line is correct you will get x^4+3x^2 and just factor that out and you are done.

<br /> y=\frac{x^3}{x^2 +1} \\<br /> y&#039;=\frac{vu&#039;-uv&#039;}{v^2} \\<br /> y&#039;=\frac{(x^2 +1)3x^2-x^32x}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{3x^4 + 3x^2 - 2x^4}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{x^4 + 3x^2}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{x^2(x^2 +3)}{(x^2 + 1)^2} \\<br />

like that? Thanks.
 
FaraDazed said:
<br /> y=\frac{x^3}{x^2 +1} \\<br /> y&#039;=\frac{vu&#039;-uv&#039;}{v^2} \\<br /> y&#039;=\frac{(x^2 +1)3x^2-x^32x}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{3x^4 + 3x^2 - 2x^4}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{x^4 + 3x^2}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{x^2(x^2 +3)}{(x^2 + 1)^2} \\<br />

like that? Thanks.

Yep that's it!
 
  • #10
mtayab1994 said:
Yep that's it!

Thank you :)
 
  • #11
FaraDazed said:
Thank you :)

Not a problem.
 
  • #12
mtayab1994 said:
Yep that's it!

Hi again!

I have just been playing around with part E again and think I may have made it even simpler, can you tell me if what I have done below is OK?

<br /> y=\frac{x^3}{x^2 +1} \\<br /> y&#039;=\frac{vu&#039;-uv&#039;}{v^2} \\<br /> y&#039;=\frac{(x^2 +1)3x^2-x^32x}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{3x^4 + 3x^2 - 2x^4}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{x^4 + 3x^2}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{x^2(x^2 +3)}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{x^2(x^2 +3)}{x^4+2x^2+1} \\<br /> y&#039;=\frac{x^2(x^2 +3)}{x^2(x^2+2+1)} \\<br /> y&#039;=\frac{x^2+3}{x^2+2+1} \\<br /> y&#039;=\frac{x^2+3}{x^2+3} \\<br /> y&#039;=1 \\<br />
 
  • #13
FaraDazed said:
Hi again!

I have just been playing around with part E again and think I may have made it even simpler, can you tell me if what I have done below is OK?

<br /> y=\frac{x^3}{x^2 +1} \\<br /> y&#039;=\frac{vu&#039;-uv&#039;}{v^2} \\<br /> y&#039;=\frac{(x^2 +1)3x^2-x^32x}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{3x^4 + 3x^2 - 2x^4}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{x^4 + 3x^2}{(x^2 + 1)^2} \\<br /> y&#039;=\frac{x^2(x^2 +3)}{(x^2 + 1)^2}
Stop here. Expanding the denominator serves no purpose, and there is an error in your work.
FaraDazed said:
<br /> y&#039;=\frac{x^2(x^2 +3)}{x^4+2x^2+1} \\<br /> y&#039;=\frac{x^2(x^2 +3)}{x^2(x^2+2+1)} \\<br /> y&#039;=\frac{x^2+3}{x^2+2+1} \\<br /> y&#039;=\frac{x^2+3}{x^2+3} \\<br /> y&#039;=1 \\<br />

No.
x4 + 2x2 + 1 ≠ x2(x2 + 2 + 1)
 
Back
Top