FaraDazed
- 347
- 2
Homework Statement
Differentiate the following and display in the simplest form.
Part A:
y=0.2x^5 - sin4x + cos4x
Part B:
y=(2x^4 +3)^3<br />
Part C:
<br /> y=2x^3 sinx<br />
Part D:
<br /> y=\frac{sinx}{x^2}<br />
Part E:
<br /> y=\frac{x^3}{x^2 +1}<br />
Homework Equations
chain rule
product rule
quotient rule
The Attempt at a Solution
Part A:
<br /> y=0.2x^5 - sin4x + cos4x \\<br /> y'=x^4-4 \ cos4x-4 \ sin4x<br />
Part B:
<br /> y=(2x^4 +3)^3 \\<br /> let \ u =2x^4 +3 \\<br /> u'=8x^3 \\<br /> y'(u)=3u^2 \\<br /> y'=3u^2 \times 8x^3 \\<br /> y'=3(2x^4 +3)^2 \times 8x^3 \\<br /> y'=24x^3(2x^4+3)^2 \\<br />
Part C:
<br /> y=2x^3 \ sinx \\<br /> let \ u = 2x^3 \\<br /> let \ v = sinx \\<br /> y'=vu'+uv' \\<br /> y'=sinx \ 6x^2 + 2x^3 \ cosx \\<br /> y'=2x^2(3 \ sinx + x \ cosx)<br />
Part D:
<br /> y=\frac{sinx}{x^2} \\<br /> y'=\frac{vu'-uv'}{v^2} \\<br /> y'=\frac{x^2 cosx - sinx \ 2x}{(x^2)^2} \\<br /> y'=\frac{x(x \ cosx - 2sinx)}{x^4} \\<br /> y'=x^{-3}(x \ cosx - 2sinx)<br />
Part E:
<br /> y=\frac{x^3}{x^2 +1} \\<br /> y'=\frac{vu'-uv'}{v^2} \\<br /> y'=\frac{(x^2 +1)3x^2-x^32x}{(x^2 + 1)^2} \\<br /> y'=\frac{3x^4 + 3x^2 - 2x^4}{(x^2 + 1)^2} \\<br /> y'=\frac{x^2(3x^2 + 3 - 2x^2 )}{(x^2 +1)^2} \\<br />
Last edited: