MHB Basic equation in Vector Space - Cooperstein Exercise 1, Section 1.3

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Bruce Cooperstein's book: Advanced Linear Algebra ... ...

I am focused on Section 1.3 Vector Spaces over an Arbitrary Field ...

I need help with Exercise 1 of Section 1.3 ...

Exercise 1 reads as follows:View attachment 5107Although apparently simple, I cannot solve this one and would appreciate help ...

Peter*** EDIT ***

To give MHB readers an idea of Cooperstein's notation and approach I am providing Cooperstein's definition of a vector space ... as follows:View attachment 5108
 
Physics news on Phys.org
$0 = 0 + 0$ (A3)
$c0 = c(0 + 0)$ (multiplying both sides by $c$)
$c0 = c0 + c0$ (M1)
$c0 + (-c0) = (c0 + c0) + (-c0)$ (adding $-c0$, which exists by A4, to both sides)
$0 = (c0 + c0) + (-c0)$ (A4, again, on the LHS))
$0 = c0 + (c0 + -(c0))$ (A2, on the RHS)
$0 = c0 + 0$ (A4)
$0 = c0$ (A3).

The crux of this argument has its origins in a similar theorem from group theory:

In a group $(G,\ast)$ if $a\ast a = a$, then $a = e$. The only part of it that is "vector-y" is where we invoke M1 to write $c0$ as $c0 + c0$. This is an oft-used type of proof, for example in the real numbers, to show $x = 0$, it suffices to show that $x = 2x$, and in the non-zero reals, if $t$ is a root of $t^2 - t$, then $t = 1$ (we have to exclude $t = 0$ from the reals to get a *group* as $0$ has no multiplicative inverse).
 
Last edited:
Deveno said:
$0 = 0 + 0$ (A3)
$c0 = c(0 + 0)$ (multiplying both sides by $c$)
$c0 = c0 + c0$ (M1)
$c0 + (-c0) = (c0 + c0) + (-c0)$ (adding $-c0$, which exists by A4, to both sides)
$0 = (c0 + c0) + (-c0)$ (A4, again, on the LHS))
$0 = c0 + (c0 + -(c0))$ (A2, on the RHS)
$0 = c0 + 0$ (A4)
$0 = c0$ (A3).
Thanks Deveno ...

hmm ... easy to follow the solution ... but not so easy to dream up or create solution ... :(

Thanks again for the help ... much appreciated ...

Peter
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 28 ·
Replies
28
Views
4K