MHB Basic equation in Vector Space - Cooperstein Exercise 1, Section 1.3

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Bruce Cooperstein's book: Advanced Linear Algebra ... ...

I am focused on Section 1.3 Vector Spaces over an Arbitrary Field ...

I need help with Exercise 1 of Section 1.3 ...

Exercise 1 reads as follows:View attachment 5107Although apparently simple, I cannot solve this one and would appreciate help ...

Peter*** EDIT ***

To give MHB readers an idea of Cooperstein's notation and approach I am providing Cooperstein's definition of a vector space ... as follows:View attachment 5108
 
Physics news on Phys.org
$0 = 0 + 0$ (A3)
$c0 = c(0 + 0)$ (multiplying both sides by $c$)
$c0 = c0 + c0$ (M1)
$c0 + (-c0) = (c0 + c0) + (-c0)$ (adding $-c0$, which exists by A4, to both sides)
$0 = (c0 + c0) + (-c0)$ (A4, again, on the LHS))
$0 = c0 + (c0 + -(c0))$ (A2, on the RHS)
$0 = c0 + 0$ (A4)
$0 = c0$ (A3).

The crux of this argument has its origins in a similar theorem from group theory:

In a group $(G,\ast)$ if $a\ast a = a$, then $a = e$. The only part of it that is "vector-y" is where we invoke M1 to write $c0$ as $c0 + c0$. This is an oft-used type of proof, for example in the real numbers, to show $x = 0$, it suffices to show that $x = 2x$, and in the non-zero reals, if $t$ is a root of $t^2 - t$, then $t = 1$ (we have to exclude $t = 0$ from the reals to get a *group* as $0$ has no multiplicative inverse).
 
Last edited:
Deveno said:
$0 = 0 + 0$ (A3)
$c0 = c(0 + 0)$ (multiplying both sides by $c$)
$c0 = c0 + c0$ (M1)
$c0 + (-c0) = (c0 + c0) + (-c0)$ (adding $-c0$, which exists by A4, to both sides)
$0 = (c0 + c0) + (-c0)$ (A4, again, on the LHS))
$0 = c0 + (c0 + -(c0))$ (A2, on the RHS)
$0 = c0 + 0$ (A4)
$0 = c0$ (A3).
Thanks Deveno ...

hmm ... easy to follow the solution ... but not so easy to dream up or create solution ... :(

Thanks again for the help ... much appreciated ...

Peter
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top