shamus390
- 8
- 0
Homework Statement
Let R be a ring with identity, and a,b are elements in R. If ab is a unit, and neither a nor b is a zero divisor, prove a and b are units.
Homework Equations
If ab is a unit then (ab)c=1=c(ab) for some c in R.
The Attempt at a Solution
Assume both a and b are not zero divisors, and denote the identity element of R as 1.
Since ab is a unit in R, there exists some c such that (ab)c = 1.
(ab)c=1 \Rightarrow (ca)b = 1 \Rightarrow b is a unit.
Similarly, (ab)c= 1 \Rightarrow a(bc) \Rightarrow a is a unit.
Does the above sufficiently prove the claim in the problem statement? I feel like I'm missing something.
Thanks!