How Do Bessel Functions Relate to Fourier Transforms in SHM Problems?

rem
Messages
7
Reaction score
0
bessel function please explain

1. Homework Statement

summation limits (n=j to infinity) (-a/4)**n/n!(2n_
n+j)
=(-1)**j e**(-a/2) I(a/2) where j>=1 the rest are constants and I is summation index
i was just solving a SHM problem involving Fourier transform in which this happens to be one of the steps involving the solution. i got this solution from mathematica it seems it's a modified bessel function of 1st kind.can anyone please explain this.i know nothing about bessel function and my basics in mathematics is bit shaky.

2. Homework Equations
iv(x)=summation limits 0 to infinity.(1/s!(s+1)!)*(x/2)^(2s+v)


3. The Attempt at a Solution

i read book by arfken and others but still can't understand.now it's more confusing.i got so confused with this step i can no longer remember the actual problem.
 
Physics news on Phys.org
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top