Bessel function for a 2D circular plate

iamfromspace
Messages
3
Reaction score
0
(Repost of thread, wrong forum).

Hi all,

I'm writing a simulation of Chladni plates in Max/MSP and hope to use it in granular synthesis. I have found two formulas on the web; square and circular plate. I understand the square but the circular is quite confusing as I'm not a mathematician and I need help breaking it down so I can compute it in Max/MSP. Can anyone shed some light on the following formula?... :)

"For a circular plate with radius R the solution is given in terms of polar coordinates (r,theta) by

Jn(K r) (C1 cos(n theta) + C2 sin(n theta))

Where Jn is the n'th order Bessel function. If the plate is fixed around the rim (eg: a drum) then K = Znm / R, Znm is the m'th zero of the n'th order Bessel function. The term "Znm r / R" means the Bessel function term goes to zero at the rim as required by the constraint of the rim being fixed."

Btw, I'm not looking for someone to hold my hand... just a little guidance..


Thanks.
 
Mathematics news on Phys.org
Bessel functions look like this: http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html

They are solutions of a pde which, I guess(?), describes your modes of vibration.

The subscript shows which order of Bessel function you have -- the mode profile in the radial direction -- the cos/sin bit shows how these profiles vary in the angular direction.

Plot them in, eg., MATLAB and you'll get the idea.
 
Thank you.

I will plot them in Matlab, and post back with the results.

Looking at the formula I am unsure of what C1/C2 stands for. Do you know?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top