Solving Bessel Functions Homework Questions

skrat
Messages
740
Reaction score
8

Homework Statement


Calculate:
a) ##\frac{d}{dx}(xJ_1(x)-\int _0^xtJ_0(t)dt)##
b) ##xJ_1(x)-\int _0^xtJ_0(t)dt##
c) let ##\xi _{k0} ## be the ##k## zero of a function ##J_0##. Determine ##c_k## so that ##1=\sum _{k=1}^{\infty }c_kJ_0(\frac{x\xi _{k0}}{2})##.

Homework Equations


The Attempt at a Solution



a) ##\frac{d}{dx}(xJ_1(x)-\int _0^xtJ_0(t)dt)=xJ_0(x)-xJ_0(x)=0##.

b) What do I do with the integral? Should I calculate ##J_n(x)=\frac{1}{\pi }\int _0^{\pi }cos(tsin\varphi -n\varphi)d\varphi ## for n=0?

c) Hmmm, no idea here :/
 
Physics news on Phys.org
skrat said:

Homework Statement


Calculate:
a) ##\frac{d}{dx}(xJ_1(x)-\int _0^xtJ_0(t)dt)##
b) ##xJ_1(x)-\int _0^xtJ_0(t)dt##
c) let ##\xi _{k0} ## be the ##k## zero of a function ##J_0##. Determine ##c_k## so that ##1=\sum _{k=1}^{\infty }c_kJ_0(\frac{x\xi _{k0}}{2})##.


Homework Equations





The Attempt at a Solution



a) ##\frac{d}{dx}(xJ_1(x)-\int _0^xtJ_0(t)dt)=xJ_0(x)-xJ_0(x)=0##.

b) What do I do with the integral? Should I calculate ##J_n(x)=\frac{1}{\pi }\int _0^{\pi }cos(tsin\varphi -n\varphi)d\varphi ## for n=0?

c) Hmmm, no idea here :/

I'm no expert in the theory of Bessel functions, but isn't the expression in part b) just the integral of the entire expression in a) wrt x? Integrating 0 gives you a constant. The constant can easily be found by subbing in a suitable value of x, right?

c) exceeds my knowledge, someone else will have to help, sorry.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top