Beta/F Distribution: Show Y has Beta Dist.

  • Thread starter Thread starter cse63146
  • Start date Start date
  • Tags Tags
    Distribution
cse63146
Messages
435
Reaction score
0

Homework Statement



Let Y = \frac{1}{1 + \frac{r_1}{r_2}W} and W ~ F(r1,r2). Show that Y has a beta distributoin

Homework Equations


The Attempt at a Solution



I know that
fa9e3f936a51e5d79665430fbed0d961.png
and
e828dff3279f65f494946ea0e3d00d75.png
, then Y has a beta distribution.

Not sure what to do next.
 
Last edited by a moderator:
Physics news on Phys.org
If W is F(m,n), then 1/W is F(n,m).
 
Sorry, but I'm still having problems with the tranformation.
 
Just multiply the numerator and denominator of \frac{1}{1 + \frac{r_1}{r_2}W} by an appropriate quantity, to put it in the form \frac{\frac{\nu_1}{\nu_2}X}{\frac{\nu_1}{\nu_2}X + 1}
 
So:

\frac{1}{1 + \frac{r_1}{r_2}W}\frac{\frac{r_2}{r_1}\frac{1}{W}}{\frac{r_2}{r_1}\frac{1}{W}} = \frac{\frac{r_2}{r_1}\frac{1}{W}}{\frac{r_2}{r_1}\frac{1}{W} + 1} = \frac{\frac{r_1}{r_2}W}{\frac{r_1}{r_2}W + 1}
 
So:

\frac{1}{1 + \frac{r_1}{r_2}W}\frac{\frac{r_2}{r_1}\frac{1}{W}}{\frac{r_2}{r_1}\frac{1}{W}} = \frac{\frac{r_2}{r_1}\frac{1}{W}}{\frac{r_2}{r_1}\frac{1}{W} + 1}

Yes. Since 1/W is F(r2,r1), you are done.

= \frac{\frac{r_1}{r_2}W}{\frac{r_1}{r_2}W + 1}

No.
 
so I can just leave it as \frac{\frac{r_2}{r_1}\frac{1}{W}}{\frac{r_2}{r_1} \frac{1}{W} + 1} ?
 
I would substitute X for 1/W.
 
Thanks for the help.
 
Back
Top