Beta-function for the Gross-Neveu model

Manu_
Messages
12
Reaction score
1
Homework Statement
In the Peskin & Schroeder textbook, the $\beta$-function for the Gross-Neveu model is discussed in problem 12.2. After computing it, I have tried checking my results with some solutions found online. My problem is that they all disagree among each other (something quite recurrent for this book actually).
Relevant Equations
$$\mathcal{L} = \bar{\Psi}_{i}(i\not{\partial} )\Psi_{i}-g\sigma \bar{\Psi}_i\Psi_i-\frac{1}{2}\sigma^2$$

$$\delta_{Z_{\Psi}}=(ig)^2\int \frac{d^{d}k}{(2\pi)^d} Tr[\frac{i\not{k}}{k^2}\frac{i}{(k+p)^2}]=0 $$

$$\delta_{Z_{\sigma}}=-N(ig)^2\int \frac{d^{d}k}{(2\pi)^d}\frac{i\not{k}}{k^2} \frac{i(\not{k}+\not{p})}{(k+p)^2} =-Ng^2 \int \frac{d^{d}k}{(2\pi)^d}\frac{1}{(k+p)^2} =-Ng^2\frac{i}{4\pi\epsilon}+finite$$

$$\delta_{g}=(ig)^3 \int \frac{d^{d}k}{(2\pi)^d} Tr[\frac{i(\not{k}+\not{p_1})}{(k+p_1)^2} \frac{i(\not{k}+\not{p_2})}{(k+p_2)^2}] = ig^3 \int \frac{d^{d}k}{(2\pi)^d}\frac{-2k^2}{(k+p_1)^2 (k+p_2)^2}+...=-2ig^3\frac{i}{4\pi\epsilon} $$
In the Peskin & Schroeder textbook, the ##\beta## function for the Gross-Neveu model is discussed in problem 12.2. After computing it, I have tried checking my results with some solutions found online. My problem is that they all disagree among each other (something quite recurrent for this book actually). I have basically followed the original paper from Gross and Neveu:

- We start from the Lagrangian $$\mathcal{L} = \bar{\Psi}_{i}(i\not{\partial} )\Psi_{i}-g\sigma \bar{\Psi}_i\Psi_i-\frac{1}{2}\sigma^2.$$
- We compute the field strength renormalisation

For ##\Psi: ## $$\delta_{Z_{\Psi}}=(ig)^2\int \frac{d^{d}k}{(2\pi)^d} Tr[\frac{i\not{k}}{k^2}\frac{i}{(k+p)^2}]=0 $$

For ##\sigma:## $$\delta_{Z_{\sigma}}=-N(ig)^2\int \frac{d^{d}k}{(2\pi)^d}\frac{i\not{k}}{k^2} \frac{i(\not{k}+\not{p})}{(k+p)^2} =-Ng^2 \int \frac{d^{d}k}{(2\pi)^d}\frac{1}{(k+p)^2} =-Ng^2\frac{i}{4\pi\epsilon}+finite$$

- We compute the coupling renormalisation (though in the Gross-Neveu original paper, the authors argue the vertex need not be renormalised. That is a point I don't get)

$$\delta_{g}=(ig)^3 \int \frac{d^{d}k}{(2\pi)^d} Tr[\frac{i(\not{k}+\not{p_1})}{(k+p_1)^2} \frac{i(\not{k}+\not{p_2})}{(k+p_2)^2}] = ig^3 \int \frac{d^{d}k}{(2\pi)^d}\frac{-2k^2}{(k+p_1)^2 (k+p_2)^2}+...=-2ig^3\frac{i}{4\pi\epsilon} $$

- We use relation (12.53)

$$\beta (g) = M\frac{\partial}{\partial M}\left(-\delta_g +\frac{1}{2}g\sum_i \delta_{Z_i} \right)=-\frac{2g^3}{4\pi}+g\frac{-Ng^2}{4\pi}=-\frac{g^3}{4\pi}(N+2)$$

It is asymptotically free, but I do fully trust my result. Any comment welcome!
 
Physics news on Phys.org
Can you provide the references you found for this calculation?

Thanks!
 
You should find that the beta function vanishes for ##N = 1## (where ##N## is the number of two-component Dirac fermions, as in P&S's notation). This is because of a well-known equivalence between that model and that of a free massless boson. So I'm biased towards the Xianyu solutions being correct, unless somehow Murayama's definition of ##N## is given by twice the definition in P&S (which some authors like to do, since that definition of ##N## is the total number of components*flavors).

Also, after converting the difference in notations, Zinn-Justin's textbook also gives the same beta function as Xianyu's solution (he uses a different regularization scheme, but it is well-known that this doesn't change the one-loop contribution to the beta function).

I will take a look at your computations when I have time, but in the meantime I would say Xianyu's solutions are likely trustworthy.
 
Thanks King Vitamin, I will take a look in that textbook.
Actually, there is a mistake in my first post, where I used (ig) instead of (-ig) for the coupling, and this changes the final result to (N-2) instead of (N+2). But I still have to find out how to edit my post...
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top