Bifurcation between two oscillations

AI Thread Summary
The discussion revolves around the nonlinear dynamics of an emulsion droplet actuated by a laser beam, exploring various trajectory behaviors based on the parameter "1/kappa." The first bifurcation observed is identified as a subcritical Hopf bifurcation, while the classification of the second bifurcation remains uncertain. Participants suggest that the transition from oscillation (2) to (3) may indicate a period doubling bifurcation, while the transition to (4) could represent a fold bifurcation of cycles. The complexity of the underlying model, which is a nonlinear PDE coupled with a Stokes equation, adds to the challenge of accurately categorizing these bifurcations. The discussion raises questions about the validity of analyzing projected phase spaces when trajectories cross, highlighting the intricacies of the system's dynamics.
onkel_tuca
Messages
6
Reaction score
0
Hello world!

I've done a few simulations of an emulsion droplet which is actuated by a laser beam. The droplet starts to move due to the laser light. I don't want to talk too much about the physics behind this but more discuss the nonlinear dynamics of the trajectories. Depending on a parameter "1/kappa", the droplet dynamics is either

(1) damped leading to a stop of the drop
(2) oscillating around the beam
(3) oscillating around the beam, but then changing its direction
(4) the droplet shoots completely out of the laser beam and stops.

From my understanding, the first bifurcation between (1) and (2) is a typical Hopf bifurcation. See attached plot. There you see four phase-space plots (velocity vs. displacement) and a plot of the amplitude A and wavenumber \nu(=1/ wavelength) of the oscillations.

However I'm not sure if one can classify the second bifurcation between (2) and (3). In case (3) the dynamics is first along oscillation (2), then the droplet changes direction and increases its amplitude A and wavenumber \nu(=1/ wavelength of oscillation) and stays on the outer orbit.

Thus my question is: Is there a name for a bifurcation between two (very) different oscillations?

Cheers!
 

Attachments

  • bifurcations.png
    bifurcations.png
    35.3 KB · Views: 477
Physics news on Phys.org
onkel_tuca said:
From my understanding, the first bifurcation between (1) and (2) is a typical Hopf bifurcation.

I agree, it seems to be a supercritical Andronov-Hopf, at least this is what your simulation suggests.

onkel_tuca said:
However I'm not sure if one can classify the second bifurcation between (2) and (3). In case (3) the dynamics is first along oscillation (2), then the droplet changes direction and increases its amplitude A and wavenumber \nu(=1/ wavelength of oscillation) and stays on the outer orbit.

It seems to me from your plot that the wave number ##\nu## in case (3) has actually decreased? Could it be that the transition (2) ##\rightarrow## (3) indicates a period doubling (flip) bifurcation while the transition (3) ##\rightarrow## (4) is a fold bifurcation of cycles?

EDIT: You might want to look into Kuznetsov's book, "Elements of Applied Bifurcation Theory". The fourth chapter could be of interest. What is the mathematical form of your model? An ODE?
 
Hey Krylov,

thanks for your answer. I missed the email about it. The first bifurcation is actually subcritical (the position of the bifurcation depends a little bit on the initial amplitude, i.e. there's a small overlap of the damped (1) and the osc. case (2)).

The mathematical form of the model is rather complex, it's a nonlinear PDE (react.-diff.-adv. eqn) on a sphere coupled to a Stokes equation for the flow field...

There's no period flipping between (2) and (3). Also I've looked up "fold bifurcation of cycles" in Strogatz and I think that's something different than the bifurcation from (3) to (4). Just for fun I'll add a video of the four simulations. There you can see the four cases from top to bottom.

To be honest I'm not even sure if I can call that a "phase space" since trajectories cross each other. In reality my phase space is N>>1 dimensional, and I'm just projecting onto 2 dimensions. Is it still save to do these kind of analyses for a "projected phase space"?

 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top