Hotsuma
- 41
- 0
Homework Statement
\mbox{Prove or give a counterexample: If p is a prime integer, then for all integers x and y, } (x+p)^p \equiv_p x^p+y^p.
Homework Equations
\equiv_p \mbox{just means (mod p).<br /> <br /> Can you please check and see if this proof is well-formed?}
The Attempt at a Solution
\mbox{Pf: Assume p is prime. Then} (x+y)^p=<br /> \left(\begin{array}{l c}<br /> p\\<br /> 0\\<br /> \end{array}\right)<br /> <br /> x^p+<br /> <br /> \left(\begin{array}{l c}<br /> p\\<br /> 1\\<br /> \end{array}\right)<br /> <br /> x^{p-1}y+<br /> <br /> \left(\begin{array}{l c}<br /> p\\<br /> 2\\<br /> \end{array}\right)<br /> <br /> x^{p-2}y^2+ ... + <br /> \left(\begin{array}{c c}<br /> p\\<br /> p-1\\<br /> \end{array}\right)<br /> <br /> xy^{p-1}+<br /> <br /> \left(\begin{array}{l c}<br /> p\\<br /> p\\<br /> \end{array}\right)<br /> y^p = x^p + \sum^{p-1}_{k=1}x^ky^{p-k}+y^p.
\mbox{Notice that} \sum^{p-1}_{k=1}x^ky^{p-k} = \frac{p!}{k!(p-k)!}\mbox{, which, by a previously proven theorem, we know that } p\left| \frac{p!}{k!(p-k)!} \right..
\mbox{ So, by the definition of (mod p) we know that} \sum^{p-1}_{k=1}x^ky^{p-k}+y^p \equiv_p 0 \mbox{ and therefore }(x+p)^p \equiv_p x^p+y^p ~~~~\hspace{1.0cm}_\blacksquare