checkout this informations about biomedical engineering
Biomedical engineering (BME) is the application of engineering principles and techniques to the medical field. It combines the design and problem solving expertise of engineering with the medical expertise of physicians to help improve patient health care and the quality of life of healthy individuals. As a relatively new discipline, much of the work in biomedical engineering consists of research and development, covering an array of fields: bioinformatics, medical imaging, image processing, physiological signal processing, biomechanics, biomaterials and bioengineering, systems analysis, 3-D modeling, etc. Examples of concrete applications of biomedical engineering are the development and manufacture of biocompatible prostheses, medical devices, diagnostic devices and imaging equipment such as MRIs and EEGs, and pharmaceutical drugs.
Biomedical engineers usually require degrees from recognized universities, and sound knowledge of engineering and biological science. Their jobs often pay well (ranging from US $50,000 to $125,000 per year in 2005). Though the number of biomedical engineers is currently low (under 10,000), the number is expected to rise as modern medicine improves. Universities are now improving their biomedical engineering courses because interest in the field is increasing. Currently, according to U.S. News & World Report, the program at Johns Hopkins University is ranked first in the nation in the category of bioengineering/biomedical engineering. At the undergraduate level, an increasing number of programs are also becoming recognized by ABET as accredited bioengineering/biomedical engineering programs in the United States. Duke University, ranked second in the U.S. by U.S. News, was the first program accredited by the Engineering Council for Profession Development (now ABET) in September of 1972.
and that's also form Wikipedia
http://en.wikipedia.org/wiki/Biomedical_engineering