Swapnil
- 459
- 6
Biot-Savart + Coulomb + Charge Conservation = Maxwell??
Do the Biot-Savart Law, Coulomb's Law, and the Law of Charge Conservation contain the same information as Maxwell's Equations? i.e.
<br /> \begin{cases}<br /> d\vec{B} = \frac{\mu_o}{4\pi} \frac{I d\vec{l} \times \hat r }{r^2} \\<br /> \vec{E}= \frac{1}{4\pi\varepsilon_o} \frac{Q \hat r}{r^2} \\<br /> \nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t} ,<br /> \end{cases}<br /> \overset{?}{=} <br /> \begin{cases}<br /> \nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} \\<br /> \nabla \cdot \vec{B} = 0 \\<br /> \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\<br /> \nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t},<br /> \end{cases}<br />
Do the Biot-Savart Law, Coulomb's Law, and the Law of Charge Conservation contain the same information as Maxwell's Equations? i.e.
<br /> \begin{cases}<br /> d\vec{B} = \frac{\mu_o}{4\pi} \frac{I d\vec{l} \times \hat r }{r^2} \\<br /> \vec{E}= \frac{1}{4\pi\varepsilon_o} \frac{Q \hat r}{r^2} \\<br /> \nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t} ,<br /> \end{cases}<br /> \overset{?}{=} <br /> \begin{cases}<br /> \nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} \\<br /> \nabla \cdot \vec{B} = 0 \\<br /> \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\<br /> \nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t},<br /> \end{cases}<br />
Last edited: