A Bloch theorem proof with V(x)=V(x+ma)

Philethan
Messages
34
Reaction score
4
In Grosso's Solid State Physics, chapter 1, page 2, The author said that:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+V(x)\:\psi(x)=E\:\psi(x)\tag{1}$$

$$V(x)=V(x+ma)\tag{2}$$

$$V(x)=\sum_{-\infty}^{+\infty}V_n\:e^{ih_nx},\tag{3}$$where ##h_n=n\cdot2\pi/a##.

$$W_k(x)=\frac{1}{\sqrt{L}}e^{ikx}\tag{4}$$

If we apply the operator ##H=(p^{2}/2m)+V(x)## to the plane wave ##W_{k}(x)##, we see that ##H\left|W_{k}(x)\right\rangle## belongs to the subspace ##\mathbf{S}_{k}## of plane waves of wavenumbers ##k+h_{n}##:
$$\mathbf{S}_{k}\equiv\left\{W_k(x),W_{k+h_1}(x),W_{k-h_1}(x),W_{k+h_2}(x),W_{k-h_2}(x),\cdots\right\}$$

Therefore, I plug (4) into (1), and I expect that I can get the following relationship, which proves that ##H\left|W_{k}(x)\right\rangle## belongs to the subspace ##\mathbf{S}_{k}## of plane waves of wavenumbers ##k+h_{n}##:
$$\left[ -\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+V(x) \right]W_k(x)\propto W_{k+h_n}(x)=\frac{1}{\sqrt{L}}e^{i(k+h_n)x}$$
Here's my derivation:
$$\begin{align}\left[ -\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+V(x) \right]W_k(x)&=\left[ -\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+V(x) \right]\frac{1}{\sqrt{L}}e^{ikx}\\[4ex]&=\frac{\hbar^2k^2}{2m}\left(\frac{1}{\sqrt{L}}e^{ikx}\right)+\sum_{-\infty}^{+\infty}V_ne^{ih_nx}\left(\frac{1}{\sqrt{L}}e^{ikx}\right)\\[4ex]&=\frac{\hbar^2k^2}{2m}\left(\frac{1}{\sqrt{L}}e^{ikx}\right)+\sum_{-\infty}^{+\infty}V_ne^{ih_n(x+ma)}\left(\frac{1}{\sqrt{L}}e^{ikx}\right)\\[4ex]&=\frac{\hbar^2k^2}{2m}\left(\frac{1}{\sqrt{L}}e^{ikx}\right)+\sum_{-\infty}^{+\infty}V_ne^{ih_n}\left(\frac{1}{\sqrt{L}}e^{i(kx+h_nma)}\right)\end{align}$$
Then, I just don't know how to do now. I have no idea how to simply and rewrite this result to prove that it really is proportional to ##W_{k+h_n}(x)=e^{i(k+h_n)x}/\sqrt{L}##. Could you please help me? I'll really appreciate that.
 
Physics news on Phys.org
Hmmm, the author says "in free-electron case ##V(x)=0##, the wavefunctions are simply plane waves and can be written in the form ##W_{k}(x)=\frac{1}{\sqrt{L}}e^{ikx}##".
Then he talks about periodic potential case. I'm not sure, but do you think that substitute ##W_{k}(x)## in (4) into (1) is correct? Because formula (4) is for free-electron case :confused:
 
  • Like
Likes Philethan
Nguyen Son said:
Hmmm, the author says "in free-electron case ##V(x)=0##, the wavefunctions are simply plane waves and can be written in the form ##W_{k}(x)=\frac{1}{\sqrt{L}}e^{ikx}##".
Then he talks about periodic potential case. I'm not sure, but do you think that substitute ##W_{k}(x)## in (4) into (1) is correct? Because formula (4) is for free-electron case :confused:
Well... Hmm... I'm not sure, but he also said "the plane waves (4) constitute a complete set of orthonormal functions, that can be conveniently used as an expansion set." Does that mean substitute ##W_{k}(x)## into (1) is correct? =0=
 
Wait a minute... suppose that we can use formula (4) for this case and put into (1), it's really simple
\begin{align}
\frac{-\hbar^{2}}{2m} \nabla^2 W_{k}(x)+V(x)W_{k}(x)&=\frac{-\hbar^{2}}{2m} \nabla^2 \frac{1}{\sqrt{L}}e^{ikx}+ \sum_{n=-\infty}^\infty V(h_{n})e^{ih_{n}x}\frac{1}{\sqrt{L}}e^{ikx}
\nonumber \\
&=\frac{\hbar^{2}k^{2}}{2m} W_{k}(x) + \sum_{n=-\infty}^\infty V(h_{n})\frac{1}{\sqrt{L}}e^{i(k+h_{n})x}
\nonumber \\
&=\frac{\hbar^{2}k^{2}}{2m} W_{k}(x) + \sum_{n=-\infty}^\infty V(h_{n})W_{k+h_{n}}(x)
\nonumber
\end{align}
So it's belong to that subspace ##S_{k}## above
 
  • Like
Likes Philethan
Oh! Haha. I'm so stupid that I didn't see it. Thank you so much! I understand it now :D
 
Oh you're welcome but don't say you're stupid. I think it's a conventional situation when we prove a formula/relation, we usually want to expand everything, substitute everything from everywhere to see the expected result at the end of the progression, but the result goes too far away that we couldn't see the relation :biggrin::biggrin::biggrin:
 
  • Like
Likes Philethan
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top