Bob's Relativistic Velocity Addition: 0.9c for Alice & Charlie

DiracPool
Messages
1,242
Reaction score
515
My name is Bob. I'm floating in deep space and I have these two powerful cannons that shoot my friends Alice and Charlie in opposite directions to me, one to the left and one to the right. I shoot each out at 0.9c. As I look to the left, I see that Alice is flying away from me at 0.9c. Then I turn to the right and see Charlie is also flying away from me at 0.9c. So I'm feeling pretty secure because I'm thinking, well, since I can only look at one at a time, nobody here is traveling faster than c. But then I think, well, Alice and Charlie are probably looking at each other here, and they must see themselves receding from each other at 1.8c. But then I'm thinking that there's some relativistic velocity addition thing going on between Alice and Charlie that I'm not privy too whereby they see themselves as traveling at less than c relative to each other.

Do I have this correct? Can I shoot out my friends out at 0.9 c relative to each other in opposite directions and see it this way without them seeing it this way?
 
Physics news on Phys.org
DiracPool said:
Can I shoot out my friends out at 0.9 c relative to each other in opposite directions and see it this way without them seeing it this way?
Yes.
 
Friends who shoot friends aren't good friends.
Anyway, just use that equation, and they'll never be superluminal.
 
It doesn't matter if you can see them both at the same time or not; it's easy to modify your scenario so that you see them fly past each other. In fact it has little to do with what you or they literally see.
Apart of that, yes you use the velocity transformation formula to calculate how each would measure the speed of the other if they set up a standard reference system in which they themselves are considered to be in rest.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...

Similar threads

Back
Top