Bode Plot - Calculating ωgc and ωpc analytically

AI Thread Summary
The discussion focuses on calculating the gain crossover frequency (ωgc) and phase crossover frequency (ωpc) analytically for Bode Plots. Users express that while graphical methods yield good results, discrepancies arise when calculating ωgc mathematically, especially at low gain levels. A specific example illustrates that the calculated ωgc (1.57 rad/s) differs significantly from the graphical value (2 rad/s), raising questions about the reliability of analytical calculations versus graphical methods. It is emphasized that understanding the poles and zeros of a system is crucial for effective Bode Plot design, and that calculations should ideally be avoided when using Bode Plots for system design. Overall, the conversation highlights the complexities and challenges in accurately determining frequency characteristics in control system design.
phiby
Messages
74
Reaction score
0
I am learning to draw Bode Plots. I am able to figure out ωgc, ωpc, Phase Margin & Gain Margin graphically from the Bode Plot. But I was wondering if there is a way to calculate ωgc and ωpc mathematically with some formulas - how do I do this?
 
Last edited:
Engineering news on Phys.org
There is the Laplace transform that converts a time domain equation to an "s" domain equation, where

s = i\omega
or
s = \sigma + i\omega

In this case, the time domain equation might be some differential equation that defines the behavior of a filter.
 
I calculated ωgc analytically & compared it to the one I got from a Bode plot.

When Gain is rather low (say 2), then the calculated ωgc varies a lot from the one obtained from an asymptotic Bode Plot.

For eg.

let's take
G(s)H(s) = 80/(s)(s+2)(s+20)

= 2/(s)(1 + 0.5s)(1 + 0.05s).

In this case the ωgc is very close to where the approximation error happens for the first cornering frequency (2 rad/s - corresponding to (1 + 0.5s)).

My calculated ωgc = 1.57 rad/s.
The one on the graph (where the Magnitude plot intersects 0) is around 2 rad/s.

On a semilog paper the horizontal distance in the 2 lines (ω = 1.57 & ω = 2) is rather big.

Is this a known issue?
 
I use Bode plot for years to design all sort of closed loop control systems and I consider myself pretty good at taming them. I never get into the s-plane stuff. Bode plot and the ωgc is almost two different thing, you draw your Bode plot from knowing the pole and zero frequency of the system, not the other way around. When you use Bode Plot, you try to avoid all the calculation and use graph to design the system. If you want to do calculation, don't use Bode Plot.

When you design a closed loop system, you measure the system poles and zeros and design the amplifier circuit with poles and zeros to get single pole cross over with enough phase margin. Identifying the system poles and zeros are the most difficult part.

When you identify all the poles and zeros of the system, your job is over 90% done, the rest is just defining which part belong to the forward gain and which part be the reverse feedback and draw the Bode plot and add your own gain, poles and zeros to get the single pole cross over with phase margin!
 
Last edited:
i remember calictlating phase cross over frequency by equating argument of open loop transfer function to -180 degrees and gain cross over frequency by equating magnitude to 1. . .
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top