More precisely, the wave function of a bound electron--that is, an electron that is confined in a bound state--is a standing wave (if we ignore the issues with that term--see below). We don't assume this; we derive it by solving the Schrodinger equation with an appropriate potential energy term describing how the electron is bound (for example, the Coulomb potential of the nucleus in an atom), and looking at the time-independent solutions.
Also, the term "standing wave" might be misleading, because it suggests that the bound electron is confined to, for example, a single "orbit" at a fixed radius around the nucleus in an atom. That is not the case. The wave function describing a stationary state of the bound electron in an atom is distributed in all 3 spatial dimensions, and the "nodes" of the distribution (places where the amplitude is zero) are not equally spaced as the "standing wave" analogy suggests. (So, for example, your images in the OP are not descriptions of an actual electron wave function.)