Bohr Quantization with linear potential

andre220
Messages
75
Reaction score
1

Homework Statement


Using Bohr's quantization rule find the energy levels for a particle in the potential: $$U(x) = \alpha\left|x\right|, \alpha > 0.$$

Homework Equations


##\oint p\, dx = 2\pi\hbar (n + \frac{1}{2})##

The Attempt at a Solution


Okay so:
##\begin{eqnarray}
\oint p\, dx &= \int \sqrt{2m(E-U(x))}\,dx\\
&= \int\limits_{-\infty}^{+\infty} \sqrt{2m(E-\alpha\left|x\right|)}\,dx\\
&= 2\pi\hbar (n+\frac{1}{2}
\end{eqnarray}##
So far, I believe this is correct, but the integral doesn't converge so either I am missing something or I've done something wrong. I can't seem to see what it is. Any help is greatly appreciated.
 
Physics news on Phys.org
There's a turning point where the square-root becomes imaginary, that's your upper limit...
 
Right I see, so I get the two turning points at $$\pm \sqrt{\frac{E^2}{\alpha^2}}$$ and now its just a matter of evalutating the integral.
 
Yes, and the integral is easy to carry out.
Also, note that it is symmetric about 0 so you can dispose of the absolute value and take twice the integral from 0 to the turning point.
 
Thank you for your help. Got an answer of $$E_n = \alpha\left(\frac{3}{2}\frac{\pi\hbar}{\sqrt{2m}}(n+\frac{1}{2})\right)^{2/3}.$$ which seems okay.
 
No problem... But i think you want to put this α inside the parenthesis ;)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top