Most of this post is an overview. The actual question is at the end. Basically: If I am given crazy summations with lots of indices cycling through multiple matrices, is there a quick way I can implement this in Mathematica?(adsbygoogle = window.adsbygoogle || []).push({});

So, I am doing a little bit of research into nonholonomic constraints in Lagrange equations, and I ran across this particular topic. It seems a lot more rigorous and standardized than trying to seek out Lagrange multipliers. It involves finding a matrix [itex]\Psi[/itex] which converts generalized velocities into instantaneous (quasi-) velocities, for the coordinates which there exist nonholonomic constraints.

If you have a system whose generalized coordinates are mostly independent of each other, this matrix will be mostly diagonal populated with 1's. However, for the coordinates that have nonholonomic constraints attached to them, nondiagonal terms show up. This makes perfect sense.

However, finding the Hamel Coefficients is an absolute dog of a task. Once I find the Hamel coefficients, then everything works itself out pretty nicely.

These are the equations in question. The first equation is the Boltzmann-Hamel equation for the r'th generalized quasicoordinate. Solving this equation shows how the r'th coordinate evolves over time. [itex]\overline{Q}_r[/itex] is the force acting in the generalized quasicoordinate direction, and [itex]\tilde{n}[/itex] is the number of generalized quasicoordinates. The number of equations needed to fully describe the evolution of the entire system is [itex]\tilde{n}-\tilde{c}[/itex] where [itex]\tilde{c}[/itex] is the number of nonholonomic constraints, so the index r for the equation only goes up to [itex]\tilde{n}-\tilde{c}[/itex].

I need some good method for generating the [itex]\gamma[/itex] Hamel coefficients. They act on an [itex]\tilde{n}\times\tilde{n}[/itex] matrix [itex]\Phi[/itex] that is the inverse of [itex]\Psi[/itex]

If I have the matrix [itex]\Phi[/itex] written up in Mathematica, is there a good way that I can apply these summations in there, to quickly generate the coefficients [itex]\gamma[/itex] I need?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Boltzmann-Hamel equations, quick way of generating Hamel coefficients?

Loading...

Similar Threads - Boltzmann Hamel equations | Date |
---|---|

Jacobian matrix and Navier Stokes equation | Feb 15, 2018 |

Airy Stress Func. Polynomial order to satisfy the biharmonic equation | Dec 29, 2017 |

What is the equation of this stress-strain curve? | Nov 14, 2017 |

Automotive Equation of motion for a driving wheel | Sep 25, 2017 |

Need guidance for learning lattice Boltzmann | Mar 1, 2010 |

**Physics Forums - The Fusion of Science and Community**