TriTertButoxy
- 190
- 0
Since the angular momentum vector \mathbf{J} is just a 3-vector, it transforms non-covariantly under Lorentz transformations -- more specifically, boosts generated by \mathbf{K}. Indeed, the commutator reads [J_i,\,K_j]=i\epsilon_{ijk}J_k.
Under a finite boost, I find the angular momentum vector gets mixed up with the 'boost vector'
\mathbf{J}\rightarrow\gamma\left[\mathbf{J}-\left(\frac{\gamma}{\gamma+1}(\mathbf{\beta}\cdot \mathbf{J})\mathbf{\beta}-\mathbf{\beta}\times\mathbf{K}\right)\right]
(c.f. the Lorentz transformation of the electric field). How do I interpret this result? In which direction does the new angular momentum vector point? It depends on the boost vector?
Under a finite boost, I find the angular momentum vector gets mixed up with the 'boost vector'
\mathbf{J}\rightarrow\gamma\left[\mathbf{J}-\left(\frac{\gamma}{\gamma+1}(\mathbf{\beta}\cdot \mathbf{J})\mathbf{\beta}-\mathbf{\beta}\times\mathbf{K}\right)\right]
(c.f. the Lorentz transformation of the electric field). How do I interpret this result? In which direction does the new angular momentum vector point? It depends on the boost vector?