Bose-Einstein condensate in a particular system

fluidistic
Gold Member
Messages
3,928
Reaction score
272

Homework Statement


Hi guys,
I'm having some troubles on a problem. There are N spinless particles with allowed energies ##\vec p^2 /(2m)## and ##-\gamma## where ##\gamma >0##.
1)Find the number of particles with energy ##-\gamma## in function of T.
2)Which conditions must ##\mu## satisfy?
3)Is there a Bose-Einstein condensate?
4)What is the critical temperature of the condensate?

Homework Equations


Several.

The Attempt at a Solution


1)I got ##n(-\gamma)=\frac{1}{e^{-\beta (\mu +\gamma ) -1}}##.
2)Since ##n(-\gamma)## must be non negative, I found out that ##\mu \leq -\gamma##.
3)This is where the problems begin.
In order to check out if there's a condensate, I must investigate what happens with ##<N>/V##.
I found out that ##\frac{\langle N \rangle}{V}=\frac{1}{V}\cdot \frac{z}{e^{-\gamma \beta }-z} + \frac{g_{3/2}(z)}{\lambda _{\text{thermal}}}=\frac{1}{v}=\rho##.

I've got enormous troubles determining what values z takes when T tends to 0 and T tends to positive infinity. I know that ##g_{3/2}(z)## is bounded for ##0\leq z \leq 1##.

z is the fugacity and is worth ##e^{\beta \mu}##. Also, I am not 100% sure, but I believe that when T tends to positive infinity, mu tends to minus infinity. This complicates me a lot when I must figure out what value z takes in this case. But I believe that it's 0, I mean ##z\to 0##.

Now when T tends to 0, I believe that ##\mu \to -\gamma##. And so that z tends to 0, same case as when T tends to positive infinity... which cannot be.

I don't know where I go wrong. These limits are confusing me a lot.

Thanks for any light shedding!
 
I solved my problem. I had to check out the z limits only via the values for mu and forget about temperature for a moment.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top