A M-Theory: Bosonic Fields - Need Help With Part III

  • A
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Fields M-theory
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Need help with part iii)

1624800784728.png


i) Under ##C \rightarrow C + d\Lambda##, and since ##dG = d^2C = 0 \implies d(\Lambda \wedge G \wedge G) = d\Lambda \wedge G \wedge G##, then neglecting the surface terms\begin{align*}
\int_D d\Lambda \wedge G \wedge G = \int_D d(\Lambda \wedge G \wedge G) &= \int_{\partial D} \Lambda \wedge G \wedge G = 0
\end{align*}ii) Varying with respect to the metric\begin{align*}
\delta S = \dfrac{1}{2}M^9 \int d^{11}x \left[\delta\sqrt{-g} \left(R - \dfrac{1}{48}G_{\mu \nu \rho \sigma}G^{\mu \nu \rho \sigma} \right) + \sqrt{-g} \delta R \right]
\end{align*}Using the classic trick for diagonalisable matrices ##\delta \sqrt{-g} = \dfrac{1}{2\sqrt{-g}} (-g) \mathrm{tr}(g^{-1} \delta g) = \dfrac{-1}{2} \sqrt{-g} g_{\mu \nu} \delta g^{\mu \nu}##. Meanwhile for the Ricci scalar\begin{align*}

\delta R = \delta (g^{\mu \nu} R_{\mu \nu}) &= g^{\mu \nu} \delta R_{\mu \nu} + \delta g^{\mu \nu}R_{\mu \nu} \\

&= \nabla_{\mu} [g^{\rho \nu} \delta \Gamma^{\mu}_{\rho \nu} - g^{\mu \nu} \delta \Gamma^{\rho}_{\nu \rho}] + \delta g^{\mu \nu} R_{\mu \nu}

\end{align*}Therefore the Einstein equation should be\begin{align*}
\dfrac{-1}{2} g_{\alpha \beta} \left(R - \dfrac{1}{48}G_{\mu \nu \rho \sigma}G^{\mu \nu \rho \sigma} \right) + R_{\alpha \beta} &= 0 \\

\end{align*}Is this correct?

iii) Little progress made, hints appreciated.
 
Last edited:
Physics news on Phys.org
From which paper/book/lecture notes is this taken from?
 
ergospherical said:
Need help with part iii)
Therefore the Einstein equation should be \begin{align*}<br /> \dfrac{-1}{2} g_{\alpha \beta} \left(R - \dfrac{1}{48}G_{\mu \nu \rho \sigma}G^{\mu \nu \rho \sigma} \right) + R_{\alpha \beta} &amp;= 0 \\<br /> \end{align*} Is this correct?
No. The field equation should be of the form R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R \propto T_{\mu\nu}(G), where, T_{\mu\nu}(G) is the energy-momentum tensor of the 4-form field G. Try to practise with the action S = \int d^{4}x \sqrt{-g} \left( R - \frac{1}{4}F^{2}\right), where F^{2} = F_{\mu\nu}F^{\mu\nu} = g^{\mu\rho}g^{\nu\sigma}F_{\mu\nu}F_{\rho\sigma} .

ergospherical said:
iii) Little progress made, hints appreciated.
The relevant part of the action is - \frac{1}{2(4!)}\int d^{11}x \ \sqrt{-g} \ G^{2} - \frac{1}{6} \int C \wedge dC \wedge dC . For the first integral, the variation gives you - \frac{1}{4!} \int d^{11} \sqrt{-g} \ G^{\mu_{1} \cdots \mu_{4}} (d \delta C)_{\mu_{1} \cdots \mu_{4}}, which is same as - \int \ \star G \wedge d(\delta C) = - \int \ d (\delta C) \wedge \star G . Now, since d (\delta C \wedge \star G) = d(\delta C) \wedge \star G - \delta C \wedge d (\star G) , then the variation of the first integral (ignoring boundary integral) is - \int \ \delta C \wedge d \star G .
Similarly, for the second integral, you get -\frac{1}{6}\left( \int \delta C \wedge G \wedge G + 2 \int d(\delta C) \wedge C \wedge G \right) . Integrating the second term by parts, the result of the variation becomes - \frac{3}{6} \int \delta C \wedge G \wedge G . Thus, the vanishing variation of the action with respect to the 3-form C gives \int \delta C \wedge \left( d \star G + \frac{1}{2} G \wedge G \right) = 0. So, for arbitrary 3-form \delta C, you get d \star G + \frac{1}{2} G \wedge G = 0.
 
  • Like
  • Love
Likes ergospherical and vanhees71
samalkhaiat said:
Try to practise with the action S = \int d^{4}x \sqrt{-g} \left( R - \frac{1}{4}F^{2}\right), where ##F^{2} = F_{\mu\nu}F^{\mu\nu} = g^{\mu\rho}g^{\nu\sigma}F_{\mu\nu}F_{\rho\sigma}##
I will re-write\begin{align*}
S = \int d^4 x \sqrt{-g} \left( g^{\mu \nu} R_{\mu \nu} - \dfrac{1}{4} g^{\mu\rho}g^{\nu\sigma}F_{\mu\nu}F_{\rho\sigma} \right)

\end{align*}then vary ##S## with respect to the metric,\begin{align*}
\delta S &= \int d^4 x \left( R- \dfrac{1}{4}F^2 \right)\delta \sqrt{-g} + \int d^4 x \sqrt{-g} \left( \delta R - \dfrac{1}{4} F_{\mu\nu}F_{\rho\sigma} \delta(g^{\mu\rho}g^{\nu\sigma})\right)
\end{align*}We have the results:\begin{align*}
\delta \sqrt{-g} &= -\dfrac{1}{2} \sqrt{-g} g_{\mu \nu} \delta g^{\mu \nu} \\ \\

\delta R &= \delta (g^{\mu \nu} R_{\mu \nu}) = \nabla_{\mu} [g^{\rho \nu} \delta \Gamma^{\mu}_{\rho \nu} - g^{\mu \nu} \delta \Gamma^{\rho}_{\nu \rho}] + \delta g^{\mu \nu} R_{\mu \nu} \\ \\

\delta(g^{\mu\rho}g^{\nu\sigma}) &= g^{\mu \rho} \delta g^{\nu \sigma} + g^{\nu \sigma} \delta g^{\mu \rho}

\end{align*}Ignoring the total derivative using the divergence theorem, the second integral becomes\begin{align*}
I_2 &= \int d^4 x \sqrt{-g} \left( \delta g^{\mu \nu} R_{\mu \nu} -\dfrac{1}{4} F_{\mu\nu}F_{\rho\sigma}(g^{\mu \rho} \delta g^{\nu \sigma} + g^{\nu \sigma} \delta g^{\mu \rho}) \right) \\

&= \int d^4 x \sqrt{-g} \left( R_{\mu \nu} -\dfrac{1}{4} {F^{\rho}}_{\mu}F_{\rho\nu} -\dfrac{1}{4} {F_{\mu}}^{\sigma}F_{\nu\sigma} \right)\delta g^{\mu \nu}
\end{align*}due to the antisymmetry of ##F## it follows that ##{F^{\rho}}_{\mu}F_{\rho\nu} = {F_{\mu}}^{\rho} F_{\nu \rho}##, hence putting ##\delta S = 0## gives\begin{align*}
-\dfrac{1}{2} g_{\mu \nu} \left( R - \frac{1}{4}F^2 \right) + R_{\mu \nu} -\frac{1}{2} {F_{\mu}}^{\rho}F_{\nu\rho} = 0 \\ \\
\end{align*}which may be rearranged to \begin{align*}
R_{\mu \nu} - \frac{1}{2} Rg_{\mu \nu} &= \dfrac{1}{2} \left( {F_{\mu}}^{\rho}F_{\nu\rho} - \frac{1}{4} g_{\mu \nu} F^2 \right)
\end{align*}which does appear to be the stress energy tensor ##T_{\mu \nu}(F)## up to perhaps an erroneous proportionality constant?

samalkhaiat said:
- \frac{1}{4!} \int d^{11} \sqrt{-g} \ G^{\mu_{1} \cdots \mu_{4}} (d \delta C)_{\mu_{1} \cdots \mu_{4}}, which is same as - \int \ \star G \wedge d(\delta C) = - \int \ d (\delta C) \wedge \star G .
I'm having some trouble with this part. Defining the tensor ##\epsilon_{\mu_1 \dots \mu_{11}} = \sqrt{-g} [\mu_1 \dots \mu_{11}]## such that the volume element is ##\boldsymbol{\epsilon} = \epsilon_{1\dots 11} d^{11}x = \sqrt{-g} d^{11} x##, \begin{align*}
\int {\star G} \wedge d(\delta C) &= \int d^{11}x \dfrac{11!}{4! 7!} (\star G)_{[1\dots 7} d(\delta C)_{8\dots 11]} \\

&= \int d^{11}x \dfrac{11!}{4! 7!} \dfrac{1}{7!} \epsilon_{[1\dots 7| \alpha \beta \gamma \delta} G^{\alpha \beta \gamma \delta} (d\delta C)_{|8\dots 11]}
\end{align*}I'm not sure if there's an identity I could use to tidy up the antisymmetrisation?
 
Last edited:
ergospherical said:
I'm having some trouble with this part. Defining the tensor ##\epsilon_{\mu_1 \dots \mu_{11}} = \sqrt{-g} [\mu_1 \dots \mu_{11}]## such that the volume element is ##\boldsymbol{\epsilon} = \epsilon_{1\dots 11} d^{11}x = \sqrt{-g} d^{11} x##, \begin{align*}
\int {\star G} \wedge d(\delta C) &= \int d^{11}x \dfrac{11!}{4! 7!} (\star G)_{[1\dots 7} d(\delta C)_{8\dots 11]} \\

&= \int d^{11}x \dfrac{11!}{4! 7!} \dfrac{1}{7!} \epsilon_{[1\dots 7| \alpha \beta \gamma \delta} G^{\alpha \beta \gamma \delta} (d\delta C)_{|8\dots 11]}
\end{align*}I'm not sure if there's an identity I could use to tidy up the antisymmetrisation?
That mess does not take you anywhere. The proof of following identity can be found in many textbooks \alpha \wedge \star \beta = \beta \wedge \star \alpha = (\alpha , \beta) \ \epsilon , where (\alpha , \beta) (x) = \frac{1}{p!} \alpha_{\mu_{1} \cdots \mu_{p}}(x) \beta^{\mu_{1} \cdots \mu_{p}}(x) ,\epsilon (x) = \sqrt{-g(x)} dx^{0} \wedge \cdots \wedge dx^{n-1} \equiv \sqrt{-g(x)} \ d^{n}x .
 
  • Like
Likes ergospherical
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top