Bound Function: Showing Continuity at All x ≠ 2 & x = 2

  • Thread starter Thread starter hsd
  • Start date Start date
  • Tags Tags
    Bounded Function
hsd
Messages
6
Reaction score
0
(a) Show that the function g(x) =[3 + sin(1/x-2)]/[1 + x^2] is bounded.
This means to find real numbers m; M is an lR such that m ≤ g(x) ≤ M for
all x is an lR (and to show that these inequalities are satisfied!).

(b) Explain why the function:

f(x) = { [x-2] [3 + sin(1/x-2)]/[1 + x^2] , if x ≠ 2,
{ 0 , if x = 2.

is continuous at all x ≠ 2.

(c) Show that the function f(x) in Part (b) is continuous at x = 2. [Hint: Use
Part (a) and the Squeeze Theorem.]
 
Last edited:
Physics news on Phys.org
how about considering g(x) = u(x)/v(x) and each of the behaviours of those functions

note that g(x) will get big whenever u(x)>>v(x)
 
Welcome to PF;
How about showing us your attempt at the problem? ... that way we can target our assistance to where you need it most.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top