Boundary condition problem for diffusion equation

brambram
Messages
7
Reaction score
0

Homework Statement


BOUNDARY CONDITION PROBLEM
I have came up with matrix for numerical solution for a problem where chemical is introduced to channel domain, concentration equation:

δc/δt=D*((δ^2c)/(δx^2))-kc

assuming boundary conditions for c(x,t) as : c(0,t)=1, c(a,t)=0. Where a is channel's length.

What if domain is not-infinite (as it is above) and we cannot assume that the chemical is not dispersed at the end of the channel- so the boundary condition c(a,t)=0 is no longer valid?


Homework Equations



What boundary condition can we use when we cannot assume that the chemical is not dispersed at the outlet of the channel?
 
Physics news on Phys.org
Perhaps it is asking you to set c(a, t) = f(t) for some unknown function f and obtain a solution in terms of f. But I'm only guessing.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top