Calc Limit: \sqrt{x}-3/(x-9) Stuck?

  • Thread starter Thread starter Saladsamurai
  • Start date Start date
  • Tags Tags
    Limit
Saladsamurai
Messages
3,009
Reaction score
7
I don't know why I am stuck on this one?

\lim_{x\rightarrow 9}\frac{\sqrt{x}-3}{x-9}

I tried multiplying by the conjugate of both the Numerator, and then the denominator. Is there another 'trick' like that?
 
Physics news on Phys.org
Do a little substitution. What if x=t2 ? :smile:
 
Try using the x2 - y2 = (x + y)(x - y) pattern on the denominator first.
 
doh.gif


Thanks!
 
Last edited by a moderator:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top