Calculate f''(x) & Error Order | Numerical Analysis

  • Thread starter Thread starter quantum220
  • Start date Start date
  • Tags Tags
    Numerical
quantum220
Messages
2
Reaction score
0
write program calculate

[PLAIN]http://<a [/URL] href="http://www.codecogs.com/eqnedit.php?latex=f^{"}\left ( x \right )" target="_blank"><img src="http://latex.codecogs.com/gif.latex?f^{"}\left ( x \right )" title="f^{"}\left ( x \right )" /></a>[/PLAIN]
x=0
[PLAIN]http://<a [/URL] href="http://www.codecogs.com/eqnedit.php?latex=f\left ( x \right )=\frac{1}{sinx}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?f\left ( x \right )=\frac{1}{sinx}" title="f\left ( x \right )=\frac{1}{sinx}" /></a>[/PLAIN]
the erroor order [PLAIN]http://<a [/URL] href="http://www.codecogs.com/eqnedit.php?latex=\sigma \left ( h^{2} \right )" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\sigma \left ( h^{2} \right )" title="\sigma \left ( h^{2} \right )" /></a>[/PLAIN]
can you answer soon?
 
Last edited by a moderator:
Physics news on Phys.org
quantum220 said:
write program calculate

[PLAIN]http://<a [/URL] href="http://www.codecogs.com/eqnedit.php?latex=f^{"}\left ( x \right )" target="_blank"><img src="http://latex.codecogs.com/gif.latex?f^{"}\left ( x \right )" title="f^{"}\left ( x \right )" /></a>[/PLAIN]
x=0
[PLAIN]http://<a [/URL] href="http://www.codecogs.com/eqnedit.php?latex=f\left ( x \right )=\frac{1}{sinx}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?f\left ( x \right )=\frac{1}{sinx}" title="f\left ( x \right )=\frac{1}{sinx}" /></a>[/PLAIN]
the erroor order [PLAIN]http://<a [/URL] href="http://www.codecogs.com/eqnedit.php?latex=\sigma \left ( h^{2} \right )" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\sigma \left ( h^{2} \right )" title="\sigma \left ( h^{2} \right )" /></a>[/PLAIN]
can you answer soon?

Your images do not seem to be posting correctly. Can you provide direct links? Do your images show your work on the problem?
 
Last edited by a moderator:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top