LocationX
- 141
- 0
I am asked to calculate the pointing vector for the following fields:
\vec{B}=k^2 \frac{e^{ikr}}{r} \left( 1+\frac{i}{kr} \right) \hat{r} \times \vec{p_{\omega}}
\vec{E}=\frac{i}{k} (\vec{\nabla} e^{ikr}) \times \left( \frac{k^2}{r} \left(1+\frac{i}{kr} \left) \hat{r} \times \vec{p_{\omega}} \left) + \frac{i}{k} e^{ikr} \vec{\nabla} \times \left( \frac{k^2}{r} \left( i +\frac{i}{kr} \right) \hat{r} \times \vec{p_{\omega}} \right)
We know that:
\vec{S} = \frac{c}{4 \pi} Re(\vec{E}) \times Re(\vec{B})
We know that:
I can figure out Re(\vec{B}) assuming that P_omega points in the z direction:
Re(\vec{B})=k^2 p_{\omega} \frac{e^{ikr}}{r} sin \theta \hat{\phi}
since the imaginary term in B vanishes when taking the real part.
I am not sure how to calculate the real part of E, any thoughts would be appreciated.
\vec{B}=k^2 \frac{e^{ikr}}{r} \left( 1+\frac{i}{kr} \right) \hat{r} \times \vec{p_{\omega}}
\vec{E}=\frac{i}{k} (\vec{\nabla} e^{ikr}) \times \left( \frac{k^2}{r} \left(1+\frac{i}{kr} \left) \hat{r} \times \vec{p_{\omega}} \left) + \frac{i}{k} e^{ikr} \vec{\nabla} \times \left( \frac{k^2}{r} \left( i +\frac{i}{kr} \right) \hat{r} \times \vec{p_{\omega}} \right)
We know that:
\vec{S} = \frac{c}{4 \pi} Re(\vec{E}) \times Re(\vec{B})
We know that:
I can figure out Re(\vec{B}) assuming that P_omega points in the z direction:
Re(\vec{B})=k^2 p_{\omega} \frac{e^{ikr}}{r} sin \theta \hat{\phi}
since the imaginary term in B vanishes when taking the real part.
I am not sure how to calculate the real part of E, any thoughts would be appreciated.