- #1
az32
- 5
- 0
I have been trying to calculate what retinal irradiance value I get with a 1 blue LED system.
Since the manufacturer didn´t give the spectral distribution information, I will approximate LED as a monochromatic one (using the 460 nm peak).
From the datasheet, the LED intensity range goes from 6 lumen to 30 lumen. For the 6 lumen case, I used scotopic eye sensitivity curve (i want to apply the stimulus in a dark room) to convert the lumen value to radiant power (W). I simply divided the 6 lumens per the sensitivity times the 1700 normalization coefficient. Is this process right? I reached a value of 0.006W.
I know from the ray tracing software that only 3.7º of the LED (total from the center) reach the pupil. So, from the spatial LED curve, the 0.006W become approximately 1.57×10−4W (i traced a trapezium over the graphic and divided the areas)
The illuminated retinal area is 0.0031cm2
So I calculated the irradiance dividing the 1.57×10−4W by the area of 0.0031cm2, having a value of 0.05W/cm2
However, I need this value in log photons/cm2/s
Can you validate my logic? Thanks!
Since the manufacturer didn´t give the spectral distribution information, I will approximate LED as a monochromatic one (using the 460 nm peak).
From the datasheet, the LED intensity range goes from 6 lumen to 30 lumen. For the 6 lumen case, I used scotopic eye sensitivity curve (i want to apply the stimulus in a dark room) to convert the lumen value to radiant power (W). I simply divided the 6 lumens per the sensitivity times the 1700 normalization coefficient. Is this process right? I reached a value of 0.006W.
I know from the ray tracing software that only 3.7º of the LED (total from the center) reach the pupil. So, from the spatial LED curve, the 0.006W become approximately 1.57×10−4W (i traced a trapezium over the graphic and divided the areas)
The illuminated retinal area is 0.0031cm2
So I calculated the irradiance dividing the 1.57×10−4W by the area of 0.0031cm2, having a value of 0.05W/cm2
However, I need this value in log photons/cm2/s
Can you validate my logic? Thanks!