MHB Calculate the area of a triangle knowing its perimeter and 2 heights

AI Thread Summary
To calculate the area of a triangle with a perimeter of 30 m and heights of 8 m and 9 m, various methods can be utilized, including using the area formulas based on base and height, as well as Heron's formula. The area can be expressed in terms of the triangle's sides, leading to equations that relate the sides to the given perimeter. By substituting values and solving for one variable, potential solutions for the area were found, with the final calculations suggesting an area of approximately 42.93 m² or 36.28 m². Graphing the derived equations indicated three possible solutions for one side of the triangle, with two valid areas identified. The discussion emphasizes the importance of using both geometric and algebraic approaches to find the area.
loquetedigo
Messages
12
Reaction score
0
Calculate the area of a triangle knowing its perimeter and 2 heights

perimeter = 30 m
ha = 8 m
hb = 9 mNOTE = You can use the online triangle calculator TrianCal to see and draw the results.
NOTE = Do not use the values ??of responses.

A) 41.29 m2
B) 42.93 m2 or 36.28 m2
C) 42.95 m2 or 36.29 m2
D) Imposible
 
Mathematics news on Phys.org
Hello, here is what I did (this was the first idea that came to mind and it's kind of a brute force method):

Assuming the sides of the triangle are a,b,c, we have the following equations:

a+b+c+=30

The area of the triangle can be written in 3 different ways.

2 of them using A = Base * Height / 2

A = 8a/2

A = 9b/2

3rd one using Heron's Formula:

Semi-perimeter is 30/2 = 15 so

A = \sqrt{15(15-a)(15-b)(15-c)}

Now, to get an equation in only one unknown, let's pick a.

From equalizing the first 2 formulas for the area, we should get

b = 8a/9

From the perimeter, substituting b and solving for c we should get

c=(270-17a)/9

You should be able to get these answers fairly easy yourself.

Lastly, to write the equation, we equalize the Area that contains a (1st one) and the one from Heron's formula, where we substitute b and c with the values found previously. After simplifying, we should get something like this:

36a=\sqrt{15(15-a)(135-8a)(17a-135)}.

I did't actually bother with trying to solve the equation, but I did graph it using Desmos and found 3 solutions for a
9.071
10.732
20.649

Ignoring the last one (because c would be negative) and substituting both values in the Area formula, after rounding the final answer should be B.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top