Calculate the area of this pond with functions given for the perimeter

AI Thread Summary
To calculate the area of the pond, the integral of the upper function f(x) from -5 to 5 must be adjusted by subtracting the integral of the lower function g(x). This subtraction accounts for the areas below the pond that are above the x-axis, ensuring only the area between the two curves is considered. The area can be visualized as vertical strips where the height at each x is determined by the difference f(x) - g(x). Thus, the correct expression for the area is the definite integral of (f(x) - g(x)) over the specified interval. Understanding this subtraction is key to accurately finding the pond's area.
tomwilliam
Messages
141
Reaction score
2
Homework Statement
See image below. Trying to calculate area of a pond using the functions given for the upper and lower boundaries
Relevant Equations
The equation referred to in the booklet is the definite integral from a to b of f(x) wrt dx = F(b) - F(a)
202f69e6-44cd-42d3-9cd8-9991e47506e5.JPG


So the solution is obviously given here, I'm just trying to understand it. I thought that integrating f(x) from -5 to 5 would give the area under the curve (including the areas below the "pond" at the edges of the image but above y=0. I don't really understand why we are subtracting the integral of g(x).
Any help much appreciated!
Thanks
 
Physics news on Phys.org
tomwilliam said:
Homework Statement: See image below. Trying to calculate area of a pond using the functions given for the upper and lower boundaries
Relevant Equations: The equation referred to in the booklet is the definite integral from a to b of f(x) wrt dx = F(b) - F(a)

View attachment 346662

So the solution is obviously given here, I'm just trying to understand it. I thought that integrating f(x) from -5 to 5 would give the area under the curve (including the areas below the "pond" at the edges of the image but above y=0. I don't really understand why we are subtracting the integral of g(x).
Any help much appreciated!
Thanks
To get the blue area, you need to subtract from the ##\int_{-5}^5 f(x) dx## the areas ##a## and ##b## and to add to it the area ##c##:
1717884625562.png

This is what subtracting ##\int_{-5}^5 g(x) dx## does.
 
Another way to understand the same result is to imagine the area of the pond as a bunch of [blue-shaded] vertical strips, all side by side.

The ##y## extent of the strip at ##x## is given by ##f(x) - g(x)##. The total area of all the strips is then obviously ##\int_{-5}^{5} ( f(x) - g(x) )\ dx##.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top