Chemistry Calculate the Enthropy Change of Isothermal Expansion of a Non-Ideal Gas

AI Thread Summary
The discussion focuses on calculating the entropy change (ΔS) during the isothermal expansion of a non-ideal gas. Part (a) successfully derives the formula ΔS = nR ln(V2/V1) using the relationship between heat transfer and temperature. In Part (b), the user struggles to solve for pressure (P) in the non-ideal gas equation and seeks an alternative method to Newton-Raphson for finding volume (v) and subsequently ΔS. Part (c) applies the results from Part (a) to calculate ΔS with specific volume values, yielding a final answer of 19.15 J/K. The user seeks confirmation on the integration approach for Part (b) to ensure accuracy in their calculations.
Ignitia
Messages
21
Reaction score
5
Homework Statement
a) Calculate the entropy change for an isothermal expansion of a Van Der Waals Gas from V1 to V2. b) Use this to calculate ΔS for 1 mole of NH3 from 2L to 20L at 298K. c) Compare this to an Ideal Gas
Relevant Equations
ΔS = ∫ (dq/T)
PV=nRT Ideal Gas
[P + a/(v/n)[SUP]2[/SUP]][v/n - b] = RT Not Ideal
Part (a)
ΔS = ∫ (dq/T)

because: dq = PdV = (nRT/V)dV

Then:
ΔS = ∫ (1/T)*(nRT/V)dV
ΔS = nR ∫(1/V) dV
ΔS =nR[ln(V2/V1)]

Part (b)
This is where I'm stuck. I know [P + a/(v/n)2][v/n - b] = RT can be solved for P and simplified to
P = [RT/(v-b)]-[a/v2] since n=1mol

But I don't know how to proceed from here, to solve for v and in turn solve ΔS. I can't use Boyle's Law and I was told there's another method besides Newton-Rapson.

Part (c)
Take ΔS =nR(ln(V2/V1) from part (a) and input: V2=20L |V1=2L

ΔS = (1mol)(8.3145 J*mol/K)(ln(10))=19.15 J/K

19.15J/K - (part b) = Final Answer
 
Physics news on Phys.org
I think I got it:
P = [RT/(v-b)]-[a/v2]

Integrate with respect to T:

dP/dT = RT/[(v/n)-b] (d/dT) - [a/v2] (d/dT)

[a/v2] (d/dT) goes to 0 so

dP/dT = R/[(v/n)-b]

And a Maxwell states: dP/dT = dS/dV

so: dS/dV = R/[(v/n)-b]

dS = R/[(v/n)-b] dV

ΔS = ∫ R/[(v/n)-b] dV

And then just integrate from 2L to 20L? Is this correct for Part b?
 
I don't get how to argue it. i can prove: evolution is the ability to adapt, whether it's progression or regression from some point of view, so if evolution is not constant then animal generations couldn`t stay alive for a big amount of time because when climate is changing this generations die. but they dont. so evolution is constant. but its not an argument, right? how to fing arguments when i only prove it.. analytically, i guess it called that (this is indirectly related to biology, im...
Back
Top