Calculate the probability that a measure on S_y yields h/2

QFT25
Messages
24
Reaction score
3

Homework Statement


. Suppose an electron is in the spin state (a,B) If sy is measured, what is the probability of the result h/2?

Homework Equations


Eigenvectors of the pauli matrix for y are (1,i)/Sqrt[2] (1,-i)/Sqrt[2] and if you are given a wave function of the sort a | +> +b |-> then the probability of getting state | +> is a^2/(a^2+b^2)

The Attempt at a Solution



I wrote out (a,B) as a linear combination of the of the two eigenvectors for the pauli matrix and got that the probability of finding the electron with spin h bar/2 to be (|a-ib|^2)/2. I just want to check with all of you if that is right. [/B]
 
Physics news on Phys.org
Doesn't look right to me. I assume you're just being sloppy and are using b and B to be the same variable.

Please show the calculations you used to arrive at your answer.
 
Certainly (a,B)=(x/Sqrt[2])(1,i)+(y/Sqrt[2])(1,-i). I solved for x and y on Mathematica and got x=(a/Sqrt[2] - iB/Sqrt[2]) and for y= a/Sqrt[2]+iB/Sqrt[2]. I then assuming a^2+B^2=1 I just took the mod square of x and got (|a-i*B|^2)/2 to be my answer. Did I do something wrong?
 
Nope, my mistake. Your answer is correct.

Because you already worked out ##\lvert +_y \rangle = \frac{1}{\sqrt{2}}(\lvert + \rangle + i\lvert - \rangle)##, an easier way to arrive at the same result is to calculate the amplitude ##\lvert \langle +_y \vert (a,b) \rangle \rvert^2##.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top