Calculating a Motion Integral Without Hyperbolic Trigonometry

  • Thread starter Thread starter gulsen
  • Start date Start date
  • Tags Tags
    Integral Motion
gulsen
Messages
215
Reaction score
0
\int \frac{dx} { \sqrt{ \frac{1}{x} - \frac{1}{b}} }
where b is a positive constant.
Using http://integrals.wolfram.com" , I know the result:
-\sqrt{bx} \sqrt{b-x} + b\sqrt{b} \tan^{-1}( \frac{\sqrt{x}} {\sqrt{b-x}})
but how do I calculate it from scratch?
 
Last edited by a moderator:
Physics news on Phys.org
I'd substitute

<br /> \frac{1}{x} - \frac{1}{b} = y^2 \Leftrightarrow \frac{1}{x} = y^2 + \frac{1}{b} \Leftrightarrow x = \frac{b}{{by^2 + 1}} \Leftrightarrow dx = \frac{{ - b^2 y}}{{\left( {by^2 + 1} \right)^2 }}<br />

It gets rid of the square root and returns a rational function in y.
 
After a few conversions, I ended up with this
C \int \frac{du}{(u^2 + 1)^2}
Which I couldn't solve. I tried switching
u = \sinh(t), du = \cosh(t)dt
and
\int \frac{dt}{\cosh^3(t)}
but got stuck again.
 
Got it done. Thanks!
 
gulsen said:
Got it done. Thanks!
You're welcome!
 
The way i see it, there's no need for hyperbolic trigonometry.

\int \frac{\sqrt{bx}}{\sqrt{b-x}} \ dx

becomes under the substitution \sqrt{x} =\sqrt{b} \sin t

an integral ~ to \int \sin^{2} t \ dt.

Daniel.
 
Back
Top