gulsen
- 215
- 0
\int \frac{dx} { \sqrt{ \frac{1}{x} - \frac{1}{b}} }
where b is a positive constant.
Using http://integrals.wolfram.com" , I know the result:
-\sqrt{bx} \sqrt{b-x} + b\sqrt{b} \tan^{-1}( \frac{\sqrt{x}} {\sqrt{b-x}})
but how do I calculate it from scratch?
where b is a positive constant.
Using http://integrals.wolfram.com" , I know the result:
-\sqrt{bx} \sqrt{b-x} + b\sqrt{b} \tan^{-1}( \frac{\sqrt{x}} {\sqrt{b-x}})
but how do I calculate it from scratch?
Last edited by a moderator: