Calculating Acceleration of a Yo-Yo Using Torque and Moment of Inertia

AI Thread Summary
The discussion revolves around calculating the acceleration of a yo-yo using its mass and radii. The user provided specific measurements but encountered a wide range of acceleration values, indicating potential calculation errors. Key formulas discussed include torque and moment of inertia, with suggestions to use the parallel axis theorem for accurate results. A corrected formula for acceleration was derived, yielding a final value of approximately 2.1 m/s². The conversation highlights the importance of unit consistency and proper application of physics principles in calculations.
Liokh
Messages
9
Reaction score
0
What would be the acceleration of a yo-yo if these are my datas:

m= 10.456g
r(small) = 0.7mm
R= 1.9mm

Now on I've had accelerations varying from 0.006m/s² to 930m/s² -yeah right...

Worked on that prrety all of the time today and all I got left is a few so that I'm really in a hurry right now.
 
Physics news on Phys.org
You haven't enough data, as far as I can tell.
 
Liokh said:
What would be the acceleration of a yo-yo if these are my datas:

m= 10.456g
r(small) = 0.7mm
R= 1.9mm

Now on I've had accelerations varying from 0.006m/s² to 930m/s² -yeah right...

Worked on that prrety all of the time today and all I got left is a few so that I'm really in a hurry right now.
Think of the torque of the centre of mass of the yo-yo about the point of tangential contact with the string:

\tau = mgr_{small} = I\alpha

where I is the moment of inertia of the yo-yo about that small radius. Use the parallel axis theorem to work that out.

Use the relationship between \alpha and acceleration to find the acceleration of the centre of mass.

Are you sure these dimensions are mm and not cm? That is one awfully small yo-yo!

AM
 
Liokh said:
What would be the acceleration of a yo-yo if these are my datas:

m= 10.456g
r(small) = 0.7mm
R= 1.9mm

Now on I've had accelerations varying from 0.006m/s² to 930m/s² -yeah right...

Worked on that prrety all of the time today and all I got left is a few so that I'm really in a hurry right now.
SOLUTION HINTS:
{Yoyo Small Radius} = r = (0.7 mm) = (7e(-4) meters)
{Yoyo Large Radius} = R = (1.9 mm) = (1.9e(-3) meters)
{Yoyo Mass} = (10.456 g) = (1.0456e(-2) kg)
{Yoyo Moment of Inertia about CM Axis} = I = (1/2)*m*(R^2)
{Force Acting Thru CM} = F = m*a
{Gravitational Force on Yoyo} = m*g
{String Tension on Yoyo} = T
{Torque from String Tension about CM Axis} = τ = r*T

For Linear Motion of CM:
F = m*a =
= T - mg
::: ⇒ a = (T/m) - g ::: <---- Eq #1

For Rotational Motion about CM axis:
τ = I*α = (1/2)*m*(R^2)*{-a/r} =
= r*T ::: <---- Torque from tension "T" acting at radius "r"
::: ⇒ T = -(1/2)*m*a*(R/r)^2 ::: <---- Eq #2

Placing Eq #2 into Eq #1:
a = -(1/2)*a*(R/r)^2 - g
::: ⇒ a*{1 + (1/2)*(R/r)^2} = -g

Solve for "a" in terms of "R" and "r" (and "g"), values for which are given in the problem statement.


~~
 
Last edited:
something is wrong with your calculation
I think T is confused with τ and R^2*-a/r is derived into a*(R/r)^2
otherwise the answer makes sense either way (r² or r)
lastly, you're corect sir Mason, I did translate my cm in mm AND add the mm sign therefore doing the process twice.
 
Liokh said:
lastly, you're corect sir Mason, I did translate my cm in mm AND add the mm sign therefore doing the process twice.
Ok. So here is how I see it (which is equivalent to xanthym's approach):

\tau = mgr = I\alpha = I(a/r) = (\frac{1}{2}mR^2 + mr^2)\frac{a}{r}

a = \frac{gr^2}{(\frac{1}{2}R^2 + r^2)} = \frac{2g}{(\frac{R^2}{r^2} + 2)}

I get a = 2.1 m/sec^2

AM
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top