Calculating albedo and eccentricity

AI Thread Summary
The discussion revolves around calculating Earth's temperature based on its albedo and eccentricity, specifically addressing the equilibrium temperature and the greenhouse effect correction factor. The user seeks to estimate how much eccentricity Earth can handle before reaching extreme temperatures, using equations that relate distance from the Sun to temperature. There is confusion regarding the calculations for boiling and freezing points, particularly the distances derived from the equations, which seem inconsistent with the actual distance from the Sun to Earth. Additionally, the user inquires about defining the habitable zone around a lower mass star and how to incorporate the star's mass into their calculations. The conversation highlights the importance of understanding correction factors and the application of relevant formulas for accurate estimations.
Chief17
Messages
2
Reaction score
0
I have a three part question:

Background: For a planet on an orbit with semi-major axis a and eccentricity e, the distance of closest approach to the Sun is r = a(1 − e) and the farthest approach is r = a(1 + e).

(1) Assuming an albedo A = 0.2, estimate the temperature on Earth in equilibrium with irradiation from
the Sun. Estimate the correction factor necessary due to the greenhouse effect to bring us up to a balmy 300 K.

I don't know what to do.

(2) Assuming that this correction factor does not change, how large an eccentricity could the Earth have before the temperature extremes reach the point where the Earth reaches either boiling or freezing point?

Freezing:

Based off the equation T=T⊙((1-A)/4)^0.25(R⊙/r)^0.5,

273.15=5778((1-0.2)/4)^0.25(6.96*10^8/r)^0.5

0.005=(6.96/r)

r=1.39*10^11

Boiling:

373.15=5778((1-0.2)/4)^0.25(6.96*10^8/r)^0.5

r=7.46*10^10

These both seem reasonable to me except for one thing. The actual distance from the Sun to the Earth is 1.5*10^11. This means that the Earth is actually farther than the distance I calculated for the boiling part, which doesn't make sense.

Is this the equation I should use, and is the work (and answer) correct? Or did I do something wrong?

(3) If we define habitability as having a level of irradiation between these two extremes, consider the
habitable zone around a lower mass star. Assuming circular orbits again, and the same greenhouse correction factor as above, where is the habitable zone around a 0.5M⊙ star, which has radius 0.5R⊙ and effective temperature 3700 K?


Not sure where exactly to get started here.

Do I use the equations

L=4*pi*R⊙^2*stefan-boltzmann constant*T⊙^4
Labs=((R⊙^2*stefan-boltzmann constant*T⊙^4*pi*R^2)/r^2)(1-A)?

Not sure where the mass of the star fits in here.
 
Astronomy news on Phys.org
(1): You have the formula in (2), you just have to plug in numbers for the first part. And then find out which prefactor you need in the equation to get the actual average temperature.

Chief17 said:
The actual distance from the Sun to the Earth is 1.5*10^11. This means that the Earth is actually farther than the distance I calculated for the boiling part, which doesn't make sense.
That comes from correction factor you have to include.

(3): right
Chief17 said:
Not sure where the mass of the star fits in here.
You don't need it.
 
Thanks for the reply.

mfb said:
And then find out which prefactor you need in the equation to get the actual average temperature.

Not sure what you mean by prefactor. Would I just multiply the albedo times a value (i.e. x) and then solve for x? So:

300=5778((1-0.2x)/4)^0.25(6.96*10^8/(1.5*10^11))^0.5

----> x=-1.75
 
I'm sure you have a definition of the correction factor somewhere.
 
Is a homemade radio telescope realistic? There seems to be a confluence of multiple technologies that makes the situation better than when I was a wee lad: software-defined radio (SDR), the easy availability of satellite dishes, surveillance drives, and fast CPUs. Let's take a step back - it is trivial to see the sun in radio. An old analog TV, a set of "rabbit ears" antenna, and you're good to go. Point the antenna at the sun (i.e. the ears are perpendicular to it) and there is...
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Back
Top