Calculating Axial Thrust for a Wheelchair Axle

AI Thread Summary
Calculating axial thrust for a wheelchair axle involves understanding the conditions under which axial loads occur, which are typically minimal during normal operation. Axial loads may arise during cornering, when the user’s weight shifts, or when the wheelchair encounters obstacles like curbs. The worst-case scenario for axial stress could occur when the wheelchair is on an incline and turns, or when one wheel drops off a surface. Additionally, braking can introduce bending forces, and extreme situations like a fall could generate significant stress. Ultimately, the design should account for these potential loads while focusing on common operational conditions.
Wilson123
Messages
58
Reaction score
2
I'm in the process of calculating my combined stress on an axle I am designing, I have calculated the bending and torsional stress, however I need to calculate the direct stress in the axle. In order to do this I need to know the axial thrust in my axle, I understand what axial force is but I am unsure what kind of factors need to be taken into consideration when determining what it will be?

I understand that this isn't something which is answered by an equation and is something determined by my environment, design and function.

The axle is designed for one wheel of a wheelchair, supported by 2 bearings and is manually driven at a max speed of 10mph. Not sure if this extra info helps or not.

I think it may have something to do with when going around corners in the wheelchair will cause the most axial thrust but not sure on this either.

Any help would be great and let me know if you need anymore information.
 
  • Like
Likes Saints-94
Engineering news on Phys.org
It sounds like that, in ordinary operation, there will be no axial load on the axle. Axial loads will happen at times, if for example, the wheel chair wheel side-swipes a curb, but this is only occasionally. The fatigue calculations need to be done for the common operating conditions, which seems to be with no direct axial stress, only bending and torsion. (Actually, is there any torsion? Is there torque in the shaft? I don't know because it depends upon how you intend to attach the wheels.)
 
Dr.D said:
It sounds like that, in ordinary operation, there will be no axial load on the axle. Axial loads will happen at times, if for example, the wheel chair wheel side-swipes a curb, but this is only occasionally. The fatigue calculations need to be done for the common operating conditions, which seems to be with no direct axial stress, only bending and torsion. (Actually, is there any torsion? Is there torque in the shaft? I don't know because it depends upon how you intend to attach the wheels.)

If I am designing my axle for a worse case scenario, I need to take this possible axial load into account? My initial thought that was when the user is going around a corner, a lot of the users weights and the weight of the wheelchair frame will be transfers down the axle and this would be my worst case axial load?
 
What if the wheelchair travels part-way up a ramp, then turns sideways to take a rest? That will result in both axial and bending forces. The greatest forces will be carried on the lower wheel.

There will be situations where the entire load will be supported on one wheel, at the same time as an impulse. For example when traveling parallel with a curb and dropping a wheel over the edge.

The greatest axial tension will probably be when the downhill wheel slips on ice and the upper wheel remains in contact with the pavement.

When brakes are applied to the rim, there will be a bending force to the axle.
 
  • Like
Likes Saints-94
The worst case scenario could be when the wheelchair falls from a platform and lands on the hub. You probably want to choose a less drastic case.

My point is that the worst case is not a question of physics, but rather a matter of choice.
 
  • Like
Likes Saints-94
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Back
Top