Calculating Braking Force and Stopping Distance for an Automobile

AI Thread Summary
The discussion focuses on calculating the braking force and stopping distance for a 1470 kg automobile decelerating at 7.5 m/s². The magnitude of the braking force is correctly calculated as 11,025 N. The initial speed of 90 km/h (25 m/s) leads to an incorrect initial stopping distance estimate, which is clarified to be 41.66 m using the correct distance formula. The work done by the braking force is noted to be negative, indicating energy loss during braking. The calculations emphasize the importance of using the correct formulas and accounting for negative acceleration.
Sneakatone
Messages
318
Reaction score
0
With the brakes fully applied , a 1470 kg automobile decelerates at the rate of 7.5 m/s^2.
a) what is the magnitude of the breaking force acting on the automobile?
1470 *7.5=11025N ( I think this is correct)

b)if the initial speed is 90km/h (25 m/s) what is the stopping distance?
im thinking 25/7.5=3.33s
3.33*25=83.25 m

c)what is the work done by the breaking force at 90km/h.
part a) *part b)=J

d) what is the change in kinetic energy of the automobile?
1/2mv^2

I believe I know how to do the proceeding parts but I need the previous values.
 
Physics news on Phys.org
Sneakatone said:
a) what is the magnitude of the breaking force acting on the automobile?
1470 *7.5=11025N ( I think this is correct)
OK.

b)if the initial speed is 90km/h (25 m/s) what is the stopping distance?
im thinking 25/7.5=3.33s
3.33*25=83.25 m
Careful: The speed is not constant.
 
(b) is incorrect. The distance formula is d = v_{i}t+\frac{1}{2}at^{2}. Note that acceleration is negative in this case, and see if you can go from there.
 
if I use d = vt + (1/2)at^2
d=(25)(3.33)+1/2(-7.5)(3.33)^2
d=41.66
did I use the correct acceleration?
 
Last edited:
my distance is correct but for part c when I multiplied 41.66 * 11025N= 459301.5 J it is wrong.
 
never mind the work is negative, Thanks for the help!
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top