Calculating Center of Mass for a Group on a Boat

AI Thread Summary
To calculate the center of mass for 23 people on a boat weighing 10,000 kg, the equation x_cm = (m1x1 + m2x2) / (m1 + m2) is essential. The mass of the people (m1) totals 1610 kg, while the boat's mass (m2) is 10,000 kg. As the people walk 8 meters, the center of mass remains unchanged due to the conservation of momentum in an isolated system. The discussion highlights confusion about applying velocity and distance in the context of center of mass calculations. Ultimately, the key takeaway is that the center of mass does not shift despite the movement of individuals on the boat.
cookie monsta
Messages
4
Reaction score
0
this question has really stumped me.

23 people on a boat rest on water without friction. Each person has an average mass of 70 kg, and the boat itself weighs 10^4 kg. The entire party walks the entire 8 m distance of the boat from bow to stern. How far (in meters) does the boat move?

i know i have to use this equation somwhere:

x_cm = ( m1x1 + m2x2 ) / ( m1 + m2 )

so far i think
m1 = 23 * 70
x1 = 0
m2 = ?
x2 = ?

can anyone help me?

thnx
 
Last edited:
Physics news on Phys.org
You have data to calculate the center of mass before the people move. Since, there are no external forces acting on the c.m., will he change?

So,

x_{cm}_{i} = x_{cm}_{f}​
 
is it like this?

in an isolated system, momentum is conserved. so, m1v1=m2v2, were m1 is the mass of boat, v1 is it's velocity, m2 is the mass of all the people, v2 is the velocity of them,

v2=(m1v1)/m2
d2/t=m1/m2 x d1/t
d2=m1/m2 x d1

since every1 covers d1, assume that the center of mass is over 1point that covers the 8meters...

does this make sense?
 
no i don't think I am makes sense because we're not dealing with velocity here
 
so i got this so far but i don't know which is which to plug in

m_{1}x_{1}_{i} + m_{2}x_{2}_{i} = m_{1}x_{1}_{f} + m{2}x_{2}_{f}​

am i on the right track?
 
Last edited:
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top