Calculating Convolution Sum for Digital Signal Processing Class

  • Thread starter Thread starter wirefree
  • Start date Start date
  • Tags Tags
    Convolution Sum
AI Thread Summary
The discussion revolves around performing a convolution sum on two discrete-time signals for a Digital Signal Processing class. The original poster suspects an error in their folding operation, which involves flipping one of the signals. Clarification is sought on the complete problem statement and the specifics of the signals involved, as the initial description lacked clarity. Participants emphasize the importance of visualizing the signals and understanding the role of step functions in determining the summation range for the convolution. The conversation highlights the need for precise notation and expressions in digital signal processing tasks.
wirefree
Messages
110
Reaction score
21
TL;DR Summary
What all does folding a signal entail?
Please see below my attempt to perform the convolution operation on two discrete-time signals as part of my Digital Signal Processing class.

0794916C-1F30-4331-A74D-CF4C5459220B.jpeg
I suspect my folding operation, i.e. flipping one signal about k=0, might be the cause.

Ostensibly the answer of the convolution sum evaluated at n=-2 should be 4/3.

Would appreciate if you can point out my error.

Thank you and Namaste
 
Engineering news on Phys.org
wirefree said:
two discrete-time signals as part of my Digital Signal Processing class.
Care to share the complete problem statement with us ? Not just a snippet with rather random scribbles and no indication of what is wrapping and what is not, no logic, no punctuation, ... ?
 
BvU said:
Care to share the complete problem statement with us ?

Thank you for responding.
Hope today has been good one.

My apologies if the problem statement wasn’t ostensible. The two signals are in the first line; flipping, which is one of the steps of discrete-time convolution, occurs in the second.
Problem Statement: Perform convolution sum on the two signals shown in the first line.

Namaste.
 
wirefree said:
The two signals are in the first line; flipping, which is one of the steps of discrete-time convolution, occurs in the second.
Good :rolleyes: .

So line 1 has two signals. The first being sample(##n##) ##= 2^n [u(-n)]## and the second being ##2^{-n} [u(n+1)]## without further specification of ##u(n)## ?

How can 'flipping' (?) lead to line 2 ?

What is the relation between the third line and the preceding ones ?

And: how do I distinguish beween u, n and k in your handwriting ?

Then: I'm familiar with convolutions like
1573051250102.png

so I suppose your R is the equivalent of ##\tau## ?

## ##
 
Note that you are doing a discrete-time convolution. Try plotting (e.g., a stem plot) just the two step functions (i.e., u[n]). Look at them visually. One is reversed and the other is time shifted. Then decide which one you will reverse (i.e., flip) for the convolution operation. Do it, and look again visually. That will tell you the summation range that is relevant. Plug everything into the discrete-time convolution equation and evaluate. It is important to realize that step functions are used to limit the summation range for discrete convolutions and transforms. Have fun!

Edit - you will also need some useful expressions. See slide 2 of HERE
 
Last edited:
  • Informative
Likes berkeman
Very basic question. Consider a 3-terminal device with terminals say A,B,C. Kirchhoff Current Law (KCL) and Kirchhoff Voltage Law (KVL) establish two relationships between the 3 currents entering the terminals and the 3 terminal's voltage pairs respectively. So we have 2 equations in 6 unknowns. To proceed further we need two more (independent) equations in order to solve the circuit the 3-terminal device is connected to (basically one treats such a device as an unbalanced two-port...
suppose you have two capacitors with a 0.1 Farad value and 12 VDC rating. label these as A and B. label the terminals of each as 1 and 2. you also have a voltmeter with a 40 volt linear range for DC. you also have a 9 volt DC power supply fed by mains. you charge each capacitor to 9 volts with terminal 1 being - (negative) and terminal 2 being + (positive). you connect the voltmeter to terminal A2 and to terminal B1. does it read any voltage? can - of one capacitor discharge + of the...
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...

Similar threads

Back
Top