A Calculating decay rates for modes of a circular membrane

AI Thread Summary
The discussion focuses on calculating the theoretical relative decay rates of (m,n) modes in an ideal circular membrane after an impulse excitation. The user seeks to express these decay rates in dB/s and is exploring methods to derive them analytically, referencing the use of plate theory and eigenvalues. A suggestion was made to utilize the wave equation and Bessel zeros for frequency calculations, but the user is uncertain about obtaining decay rates and how excitation position might affect them. Concerns are raised regarding existing simulations that apply uniform damping across modes, which does not reflect natural behavior. The user is looking for a more accurate approach to model the damped wave equation for the membrane.
mikejm
Messages
40
Reaction score
2
I am trying to solve for the theoretical relative decay rates of the various (m,n) modes of an ideal circular membrane, if that membrane is excited momentarily by an impulse or deformation.

I would ideally like the decays of the (m,n) modes in dB/s.

Imagine a simple isolated drum head being struck by a stick. The membrane should be considered fixed with even tension around its perimeter. The excitation impulse/deformation should be at its center or x*radius from its center.

Someone on another site said of this problem:

If the air damps it linearly enough, you can probably solve it analytically. Use plate theory to generate a PDE, then work out all the eigenmodes. The decay rate will be determined by the real components of the eigenvalues, and can be converted into dBs-1 using a few logs.

The wave equation for modes of an ideal circular membrane is given by:
HqpEmjv.png


The full wave equations are described/explained further in these documents:

http://www.math.ubc.ca/~nagata/sci1/drum.pdf
https://courses.physics.illinois.ed...P406POM_Lecture_Notes/P406POM_Lect4_Part2.pdf
http://ramanujan.math.trinity.edu/rdaileda/teach/s12/m3357/lectures/lecture_3_29.pdf

I can use the Bessel zeros to calculate the frequencies of the various (m,n) modes and have done so already. However, I am unsure how to get the decay rates for these modes as he describes.

Does the method he suggests make sense? If so, can anyone elaborate further on how I would go about doing this? Or is there a better way?

Ideally I'd like an equation I can put in (m,n) for, plus perhaps an arbitrary constant damping coefficient, and get the decay of that mode in dB/s. If the decay rate of any mode might vary depending on the point of excitation, some way to specify for excitation position might be useful.

Thanks for any help!
 

Attachments

  • HqpEmjv.png
    HqpEmjv.png
    6.7 KB · Views: 558
Physics news on Phys.org
I was able to find a website summarizing a damped wave equation for a circular membrane here:
Image12.gif

where u is the amplitude of vibration of the membrane, r and
Image6.gif
are polar coordinates of membrane, a is the damping factor, c is the speed of a wave on the membrane.

http://www.math.ust.hk/~machas/drum/

However, the membrane simulation sounds terrible (audio clips at the end of that site) because they aren't employing the proper frequency/mode dependent per-partial damping that occurs in nature.

As far as I can tell, this is just damping all the modes equally over time, which is useless.

Am I understanding this correctly, and if so, is there any obvious way to improve this and get a more representative damped wave equation?
 

Attachments

  • Image12.gif
    Image12.gif
    1 KB · Views: 458
  • Image6.gif
    Image6.gif
    75 bytes · Views: 463
So I know that electrons are fundamental, there's no 'material' that makes them up, it's like talking about a colour itself rather than a car or a flower. Now protons and neutrons and quarks and whatever other stuff is there fundamentally, I want someone to kind of teach me these, I have a lot of questions that books might not give the answer in the way I understand. Thanks
I am attempting to use a Raman TruScan with a 785 nm laser to read a material for identification purposes. The material causes too much fluorescence and doesn’t not produce a good signal. However another lab is able to produce a good signal consistently using the same Raman model and sample material. What would be the reason for the different results between instruments?

Similar threads

Back
Top