earthsandwich
- 2
- 0
Hello folks!
I've been trying to calculate the E-field of a charged ring. It seems well documented for a symetric point(a line from the center etc.) but what I'm interested in is say if I'm slightly of the center of the ring, how can I make a more general equation?
I've tried calculating the potential and the field from there but I get a dominating 0 somewhere so that must be wrong ( V = ∫(λ(x')*dl'(1/(|x-x'|))) and E = -∇V , substituting dl' and λ(x') I get the product of those vectors to (-ρcos(θ')*ρsin(θ') + ρcos(θ')*ρsin(θ'))λdθ' = 0 ??).
Anybody knows where I'm wrong and what to do?
I've been trying to calculate the E-field of a charged ring. It seems well documented for a symetric point(a line from the center etc.) but what I'm interested in is say if I'm slightly of the center of the ring, how can I make a more general equation?
I've tried calculating the potential and the field from there but I get a dominating 0 somewhere so that must be wrong ( V = ∫(λ(x')*dl'(1/(|x-x'|))) and E = -∇V , substituting dl' and λ(x') I get the product of those vectors to (-ρcos(θ')*ρsin(θ') + ρcos(θ')*ρsin(θ'))λdθ' = 0 ??).
Anybody knows where I'm wrong and what to do?