Calculating Energy Released Per Proton & Mass Converted to Energy/sec

  • Thread starter Thread starter Qyzren
  • Start date Start date
  • Tags Tags
    Astro Process
Qyzren
Messages
41
Reaction score
0
H1 means hydrogen with mass 1, H2 means hydrogen with mass 2 (has a neutron), etc


1) H1 + H1 -> H2 + positron + neutrino + 1.18 Mev (+0.26MeV)
2) H1 + H2 -> He3 + photon + 5.49MeV
3) He3 + He3 -> He4 + 2*H1 + 12.86 MeV

(The neutrino produced in 1 for all practical purposes do not interact with matter, so their energy can be ignored (neutrino energy 0.26MeV)

Using the above 3 equations, calculate the energy released per proton. Note that the equations must be properly combined in order to find the overall reaction! Given the sun's luminosity calculate the amount of hydrogen converted to helium every second. How much mass per second is converted directly to energy?


Homework Equations


sun's luminosity: 3.826*10^26 W

answers: 6.55 MeV, 6.2*10^11 kg, 4.3x10^9 kg.

The Attempt at a Solution



I have shown each proton has released 6.55 MeV. but how do i calculate the amount of hydrogen converted to helium every second?
 
Last edited:
Physics news on Phys.org
(I removed part of my reply, since I missed at first where you said you'd gotten the 6.55 MeV per proton.)

Having gotten that answer, you have the energy release (in MeV) from one pp-reaction. Given what the luminosity (power output) of the Sun is, how many of these reactions would be needed per second? How many protons cease to exist as individuals and become groups of four in nuclei every second? How much mass is that?

Last question -- Since you have the Sun's luminosity, what mass is that energy equivalent to (that will take you from, say, Joules per second to kg/sec)? What famous equation might you use?
 
Last edited:
part c I've got, directly using E = mc² gives 4.3*10^9 kg

but i still have trouble with part b :(

Luminosity of sun is 3.826*10^26 W which is 3.826*10^26 J/s
6.55 MeV = 1.049 * 10^-12 protons/J .
 
Last edited:
Qyzren said:
i still have trouble with part b :(

Luminosity of sun is 3.826*10^26 W which is 3.826*10^26 J/s
6.55 MeV = 1.049 * 10^-12 J/proton .
so if you divide it you can get 3.64*10^38 J/proton...
Watch your units: that division gives you 3.64·10^38 protons/sec. What mass does that many protons have?

just using E = mc2 to convert J to kg won't get me the answer of 6.2*10^11 kg :(

That equation is for finding the mass-equivalent of the 3.826·10^26 J/sec, which is the answer for the third question.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top