Calculating Fourier Coefficient of 2π-Periodic Function

AI Thread Summary
The discussion focuses on calculating the Fourier coefficient of a 2π-periodic function using the integral formula provided. The user demonstrates the application of the Fourier coefficient formula and a change of variable, leading to a question about the limits of integration. They seek clarification on whether the limits matter, given that the integrand is 2π-periodic, and they propose that the integral's value remains unchanged when limits are adjusted. The reasoning hinges on the periodicity of the function, suggesting that the limits can be modified without affecting the integral's outcome.
Zaare
Messages
54
Reaction score
0
I'm supposed to show
<br /> \hat f\left( n \right) = - \frac{1}{{2\pi }}\int\limits_{ - \pi }^\pi {f\left( {x + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} \right)e^{ - inx} dx}<br />
where \hat f\left( n \right) is the Fourier coefficient and f(x) is a 2\pi-periodic and Riemann integrable on [\pi,-\pi].

This is what I've done:
I use the formulae for the Fourier coefficient of a 2\pi-periodic function
<br /> \hat f\left( n \right) = \frac{1}{{2\pi }}\int\limits_{ - \pi }^\pi {f\left( x \right)e^{ - inx} dx}<br />
and a simple change of variable
<br /> \hat f\left( n \right) = \frac{1}{{2\pi }}\int\limits_{ - \pi + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}}^{\pi + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} {f\left( {x + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} \right)e^{ - in\left( {x + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} \right)} dx} = \frac{1}{{2\pi }}\int\limits_{ - \pi + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}}^{\pi + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} {f\left( {x + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} \right)e^{ - inx} e^{ - i\pi } dx} = - \frac{1}{{2\pi }}\int\limits_{ - \pi + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}}^{\pi + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} {f\left( {x + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} \right)e^{ - inx} dx}<br />.

Everything seems to agree except for the limits of the integral.
1) If I have done some mistake, I'd appreciate it someon would point it out.
2) If I haven't done any mistakes, what's the reasoning behind this? Don't the limits matter as longs as they are 2\pi apart?
 
Physics news on Phys.org
You'll have to prove that

\int_{-\pi+\frac{\pi}{n}}^{-\pi} f\left(x+\frac{\pi}{n}\right) \ dx =-\int_{\pi}^{\pi+\frac{\pi}{n}} f\left(x+\frac{\pi}{n}\right) \ dx

Daniel.
 
Ok, here's my reasoning.
The integrand

<br /> f(x+\frac{\pi}{n})e^{-inx}<br />

is 2\pi-periodic. Hence a change from x+\frac{\pi}{n} to x+\frac{\pi}{n}+2\pi leaves the integrand unchanged and I get

<br /> \int\limits_{ - \pi }^{ - \pi + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} {f\left( {x + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} \right)e^{ - inx} dx} = \int\limits_\pi ^{\pi + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} {f\left( {x + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} \right)e^{ - inx} dx}<br />

which allows me to change the limits of the original integral to -\pi and \pi without changing its value.
Am I right?
 
Last edited:
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top