Calculating Fourier Coefficient of 2π-Periodic Function

Click For Summary
SUMMARY

The discussion centers on calculating the Fourier coefficient \(\hat f(n)\) of a \(2\pi\)-periodic function using the formula \(\hat f(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx\). A change of variable is applied to analyze the limits of integration, leading to the conclusion that the periodic nature of the integrand allows for limits to be adjusted without affecting the integral's value. The key point is that the integrand \(f(x+\frac{\pi}{n})e^{-inx}\) remains unchanged under shifts of \(2\pi\), validating the manipulation of limits.

PREREQUISITES
  • Understanding of Fourier series and coefficients
  • Knowledge of periodic functions and their properties
  • Familiarity with Riemann integrability
  • Basic calculus, particularly integration techniques
NEXT STEPS
  • Study the properties of \(2\pi\)-periodic functions in Fourier analysis
  • Learn about Riemann integrability and its implications for periodic functions
  • Explore advanced techniques in Fourier series, including convergence and applications
  • Investigate the implications of changing limits in integrals involving periodic functions
USEFUL FOR

Mathematicians, physics students, and engineers interested in Fourier analysis, particularly those working with periodic functions and integrals.

Zaare
Messages
54
Reaction score
0
I'm supposed to show
<br /> \hat f\left( n \right) = - \frac{1}{{2\pi }}\int\limits_{ - \pi }^\pi {f\left( {x + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} \right)e^{ - inx} dx}<br />
where \hat f\left( n \right) is the Fourier coefficient and f(x) is a 2\pi-periodic and Riemann integrable on [\pi,-\pi].

This is what I've done:
I use the formulae for the Fourier coefficient of a 2\pi-periodic function
<br /> \hat f\left( n \right) = \frac{1}{{2\pi }}\int\limits_{ - \pi }^\pi {f\left( x \right)e^{ - inx} dx}<br />
and a simple change of variable
<br /> \hat f\left( n \right) = \frac{1}{{2\pi }}\int\limits_{ - \pi + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}}^{\pi + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} {f\left( {x + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} \right)e^{ - in\left( {x + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} \right)} dx} = \frac{1}{{2\pi }}\int\limits_{ - \pi + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}}^{\pi + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} {f\left( {x + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} \right)e^{ - inx} e^{ - i\pi } dx} = - \frac{1}{{2\pi }}\int\limits_{ - \pi + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}}^{\pi + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} {f\left( {x + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} \right)e^{ - inx} dx}<br />.

Everything seems to agree except for the limits of the integral.
1) If I have done some mistake, I'd appreciate it someon would point it out.
2) If I haven't done any mistakes, what's the reasoning behind this? Don't the limits matter as longs as they are 2\pi apart?
 
Physics news on Phys.org
You'll have to prove that

\int_{-\pi+\frac{\pi}{n}}^{-\pi} f\left(x+\frac{\pi}{n}\right) \ dx =-\int_{\pi}^{\pi+\frac{\pi}{n}} f\left(x+\frac{\pi}{n}\right) \ dx

Daniel.
 
Ok, here's my reasoning.
The integrand

<br /> f(x+\frac{\pi}{n})e^{-inx}<br />

is 2\pi-periodic. Hence a change from x+\frac{\pi}{n} to x+\frac{\pi}{n}+2\pi leaves the integrand unchanged and I get

<br /> \int\limits_{ - \pi }^{ - \pi + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} {f\left( {x + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} \right)e^{ - inx} dx} = \int\limits_\pi ^{\pi + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} {f\left( {x + {\pi \mathord{\left/<br /> {\vphantom {\pi n}} \right.<br /> \kern-\nulldelimiterspace} n}} \right)e^{ - inx} dx}<br />

which allows me to change the limits of the original integral to -\pi and \pi without changing its value.
Am I right?
 
Last edited:

Similar threads

Replies
2
Views
1K
Replies
28
Views
2K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
3
Views
824
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 7 ·
Replies
7
Views
841
Replies
4
Views
3K